

2024

UNIVERSIDADE DE LISBOA

FACULDADE DE CIÊNCIAS

DEPARTAMENTO DE INFORMÁTICA

Improving Parallel and Concurrent
Programming in FreeST

Guilherme João Correia Lopes

Mestrado em Engenharia Informática

Versão Provisória

Dissertação orientada por:
Prof.ª Doutora Andreia Filipa Torcato Mordido Rodrigues

Prof. Doutor Vasco Manuel Thudichum de Serpa Vasconcelos

Acknowledgments

I would like to express my gratitude to my supervisors, Andreia Mordido and Vasco T. Vas-
concelos, for their invaluable guidance, understanding, and insightful contributions throughout this
work. Their expertise and patience were pivotal in shaping this work and ensuring its successful
completion.

I am profoundly grateful to my parents for their unwavering support and encouragement,
which sustained me through both the highs and lows of this journey. To my siblings, thank you
for lifting my spirits and providing much-needed distractions. I am forever indebted to my grand-
mother and aunt, whose enduring presence profoundly shaped my education and life. A special
thanks to my girlfriend, whose constant support, motivation, and unwavering belief in me were in-
valuable; your presence ensured that my resolve never wavered. I also extend my heartfelt thanks
to all my friends who consistently believed in me and provided their support.

Without the collective support of each of you, this work would not have been possible. Thank
you all.

i

Resumo

Nos últimos anos, a evolução tecnológica levou os fabricantes a adotar arquiteturas de pro-
cessadores multi-core, promovendo o crescimento da computação paralela e concorrente. Este
avanço trouxe inúmeros benefı́cios, incluindo melhorias no desempenho e na comunicação entre
processos em sistemas distribuı́dos. No entanto, essa transição também introduziu desafios signi-
ficativos, exigindo ferramentas e linguagens especializadas que possam lidar eficientemente com
o paralelismo e a concorrência. Linguagens como Erlang e Go foram criadas especificamente para
atender a essas necessidades, enquanto outras, como Java, evoluı́ram para incluir funcionalida-
des que facilitam a programação paralela e concorrente, fornecendo soluções práticas para novos
paradigmas de programação.

Assim sendo, as linguagens de programação evoluı́ram lado a lado com a computação para-
lela e concorrente, incorporando ferramentas essenciais como módulos e frameworks para abordar
diversos paradigmas de programação. Essas ferramentas permitem que programadores implemen-
tem soluções eficientes—aproveitando arquiteturas modernas de multiprocessadores—e simplifi-
cam o processo de desenvolvimento.

FreeST [3, 11] é uma linguagem de programação funcional concorrente baseada em troca de
mensagens que implementa tipos de sessão livres de contexto [50]. Tipos de sessão [32, 33, 34]
descrevem padrões de comunicação estruturados entre agentes em sistemas distribuı́dos, assegu-
rando que todos os agentes envolvidos seguem rigorosamente o protocolo de comunicação defi-
nido. Apesar das suas capacidades promissoras, FreeST é uma linguagem académica num estágio
embrionário do seu desenvolvimento. A sua aplicabilidade para cenários práticos do mundo real
permanece limitada, pois oferece apenas primitivas básicas para programação concorrente e carece
de ferramentas abrangentes que auxiliem no desenvolvimento de sistemas paralelos e concorren-
tes complexos. Consequentemente, FreeST exige um profundo conhecimento da linguagem e um
esforço significativo para desenvolver sistemas paralelos e concorrentes de forma eficaz, resul-
tando numa curva de aprendizagem acentuada que coloca desafios até mesmo para programadores
familiarizados com a linguagem.

Esta tese visa abordar essas limitações, adaptando a linguaguem FreeST para a tornar mais
viável em cenários práticos. Para isso, propomos expandir a linguagem através do desenvolvi-
mento de novos módulos que integram alguns paradigmas emergentes na programação paralela
e concorrente. Especificamente, são introduzidos três módulos principais: o módulo Parallel, o
módulo Futures e o módulo Streams.

ii

O módulo Parallel foi projetado para abordar o paralelismo de dados [37], fornecendo um
ambiente de programação com um conjunto de abstrações que facilitam a implementação de pro-
blemas embaraçosamente paralelos [27]. Estas abstrações implementam padrões de comunicação
baseados nas operações e mecanismos definidos pela especificação de Message-Passing Interface
(MPI) [43, 36]. Este módulo permite que os desenvolvedores lidem de maneira mais eficiente
com problemas que se beneficiam de divisões de trabalho triviais, melhorando a experiência de
programação através de um ambiente conciso e eficiente. Para ilustrar a sua aplicação prática,
comparamos a implementação do método de Monte Carlo [45] para estimar ω em FreeST e a
implementação usando este módulo. Este exemplo demonstra as vantagens deste módulo em lidar
com paralelismo de dados e problemas embaraçosamente paralelos de forma eficiente.

Em FreeST o resultado de computações assı́ncronas é descartado. Para recuperar o resultado, é
necessário estabelecer um canal entre a computação assı́ncrona e a thread principal. O módulo Fu-
tures foi desenvolvido para abstrair essa complexidade do gerenciamento de computações
assı́ncronas, permitindo que os desenvolvedores criem e manipulem futures [1, 14], que repre-
sentam resultados de computações realizadas de forma assı́ncrona. Isso simplifica a recuperação
dos resultados dessas computações e facilita a abordagem de problemas que se beneficiam de
estratégias de divisão e conquista [21] concorrentes, de forma semelhante ao modelo ForkJoin
[20, 39, 40]. Nesta tese, implementamos o exemplo da sequência de Fibonacci [21] de forma a
detalhar como este módulo pode ser usado para implementar algoritmos de divisão e conquista de
maneira mais intuitiva e eficiente.

Embora FreeST seja adequado para programação com streams [10, 17] devido à natureza dos
tipos de sessão, a linguagem carece de um conjunto de ferramentas que abstraiam e simplifiquem
esse paradigma de programação. O módulo Streams foi desenvolvido para suprir essa necessi-
dade, fornecendo abstrações e alguns mecanismos baseados na linguagem StreamIt [51, 9] que
incentivam práticas de programação mais estruturadas e bem definidas. Isso resulta em código
menos convoluto especialmente em cenários mais complexos. A tese explora a implementação
do algoritmo quicksort [30, 21] utilizando o módulo Streams, demonstrando as suas vantagens e
pontencialidades, e faz uma comparação entre o módulo e a linguagem StreamIt.

A validação destas contribuições foi realizada por uma avalição através da condução de três
questionários—um por cada módulo proposto—e por uma análise da redução de linhas de código
(LoC) pela utilização do módulo Parallel. Em cada questionário, os participantes realizaram um
exercı́cio a utilizar o respetivo módulo, avaliaram alguns parâmetros em uma escala de 1 a 10, e
forneceram feedback mais detalhado através de respostas abertas. Apesar de identificarem várias
limitações dentro de cada módulo, principalmente devido a restrições inerentes ao FreeST, os
questionários receberam feedback muito positivo. Isso indica uma recepção favorável e valida a
utilidade e a eficácia das contribuições realizadas.

A comparação de LoC entre implementações a usar apenas FreeST “puro” e implementações a
usar o módulo Parallel, mostra uma redução substancial na complexidade e quantidade de código
necessário, evidenciando a sua eficácia em simplificar a abordagem a paralelismo de dados e em

iii

implementar problemas embaraçosamente paralelos.
Em termos de trabalho futuro, sugerimos várias direções para continuar a expandir e refi-

nar o FreeST. Melhorias nos módulos propostos podem ser guiadas pelas limitações identificadas
durante o seu desenvolvimento, com o objetivo de criar módulos mais consistentes, flexı́veis, e
aptos a lidar com uma variedade mais ampla de cenários. Além disso, as percepções dos par-
ticipantes dos questionários apontam várias oportunidades de aprimoramento, especialmente em
termos de usabilidade. Também encorajamos a exploração de outros paradigmas e conceitos de
programação para ampliar ainda mais as capacidades de FreeST para programação paralela e con-
corrente. Exemplos incluem a Programação Reativa Funcional (FRP) [44], o modelo de atores
[29, 28] e a geração de números pseudoaleatórios (PRNG) [15].

Em suma, este trabalho contribui para o avanço da linguagem FreeST, tornando-a mais prática
e eficiente para programação paralela e concorrente. A introdução de módulos especı́ficos para
abordar diferentes paradigmas de programação não apenas expande as capacidades da linguagem,
mas também demonstra a sua aplicação prática e viabilidade em resolver problemas no mundo real.
As melhorias na linguagem e os novos módulos desenvolvidos representam um passo importante
para tornar a FreeST uma opção viável e atraente para desenvolvedores que enfrentam desafios de
programação paralela e concorrente.

Palavras-chave: Tipos de sessão, Concorrência, Problemas embaraçosamente paralelos, Futuros,
Streams

iv

Abstract

Technological advancements led manufacturers to shift from single-processor to multi-core
architectures, fostering the rise of parallel and concurrent computing. This transition has yielded
substantial benefits, such as improved performance and enhanced interprocess communication in
distributed systems. However, it has also introduced challenges requiring specialized tools and
languages to handle parallelism and concurrency efficiently and make these tasks easier for de-
velopers. Languages like Erlang and Go were purpose-built to meet these demands, while others,
such as Java, have evolved to incorporate features facilitating parallel and concurrent program-
ming, providing accessible solutions for emerging paradigms.

FreeST is a modern, message-passing concurrent functional language featuring context-free
session types to ensure strict adherence to communication protocols. While session types were
designed for concurrent programming, FreeST, despite its strengths, stumbles upon limitations
stemming from its embryonic state and the lack of comprehensive tools for addressing various
parallel and concurrent programming paradigms. Consequently, FreeST demands substantial do-
main knowledge and effort to develop parallel and concurrent systems effectively, posing a steep
learning curve. Our goal in this work is to provide a set of tools that improve and ease parallel and
concurrent programming in FreeST.

This thesis proposes the development of three modules aimed at enhancing FreeST’s capability
to handle diverse parallel and concurrent programming paradigms and concepts: data parallelism
and embarrassingly parallel problems, futures and divide-and-conquer strategies, and stream pro-
gramming. These modules are designed to leverage FreeST’s unique features and expand its prac-
tical utility in real-world applications, making it a more versatile and effective tool for addressing
complex parallel and concurrent computing challenges. To validate our contributions, we employ
surveys and a Lines of Code (LoC) comparison.

Keywords: Session types, Concurrency, Embarrassingly parallel problems, Futures, Streams

vi

viii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1

2 Background 5
2.1 Terminology and concepts . 5

2.2 Programming paradigms . 7

2.2.1 Embarrassingly parallel problems . 7

2.2.2 Futures and promises . 8

2.2.3 Divide-and-conquer . 9

2.2.4 Streams . 10

2.3 Concurrency in programming languages . 10

2.4 Related work . 12

2.4.1 Message-Passing Interface . 12

2.4.2 ForkJoin . 17

2.4.3 StreamIt . 19

3 The FreeST programming language 23
3.1 Session types . 23

3.2 The math client example . 27

3.3 Challenges . 28

4 Parallel and concurrent modules for FreeST 31
4.1 The Parallel module . 31

4.1.1 Implementing Monte Carlo in FreeST 31

4.1.2 Identifying parallel patterns . 33

4.1.3 Design and implementation . 34

4.1.4 Implementing Monte Carlo with the module 38

4.1.5 Interprocess communication: Challenges and attempts 39

4.2 The Futures module . 40

ix

4.2.1 Design and implementation . 41
4.2.2 Addressing divide-and-conquer . 42
4.2.3 Implementing the Fibonacci sequence 42
4.2.4 Comparison to ForkJoin and challenges 43

4.3 The Streams module . 44
4.3.1 Design and implementation . 45
4.3.2 Implementing the quicksort algorithm 48
4.3.3 Comparison to the StreamIt programming language 49

5 Evaluation 51
5.1 Surveys . 51

5.1.1 Design . 52
5.1.2 Results and analysis . 53

5.2 Lines of Code comparison . 56

6 Conclusion and future work 59

References 64

A Modules’ implementation code 65
A.1 Parallel module . 65
A.2 Futures module . 69
A.3 Streams module . 69

B FEP-0009: Add new concurrency-related primitives to FreeST 73

C Surveys 77
C.1 Parallel module . 77
C.2 Futures module . 86
C.3 Streams module . 92

D Survey insights 99
D.1 Parallel module . 99
D.2 Futures module . 100
D.3 Streams module . 100

x

xii

List of Figures

2.1 Sequence diagram of the ω estimation through the Monte Carlo method 8
2.2 MPI - Point-to-point C code example . 13
2.3 MPI - Illustration of the barrier pattern . 14
2.4 MPI - Illustration of the broadcast pattern . 14
2.5 MPI - Illustration of the scatter pattern . 15
2.6 MPI - Illustration of the gather pattern . 15
2.7 MPI - Illustration of the reduce pattern . 15
2.8 MPI - Illustration of the allgather and allreduce MPI patterns 15
2.9 ForkJoin - A representation of the fork and join operations 17

3.1 Linear channels - One-to-one representation . 26
3.2 Shared channels - Many-to-one representation 26

4.1 Parallel - Implementation of the Monte Carlo in FreeST 32
4.2 Parallel - The manager-workers communication framework 36
4.3 Parallel - Illustration of our implementation of the reduce operation 37
4.4 Parallel - Implementation of the Monte Carlo using the Parallel module 39
4.5 Futures - Divide-and-conquer process relationship in FreeST 42
4.6 Streams - Example of the quicksort algorithm 48

5.1 Comparison of survey results across all modules 54
5.2 LoC comparison for pure FreeST and Parallel module implementations 56

xiii

List of Tables

3.1 FreeST - Session type constructors . 24
3.2 Operations to interact with channels in FreeST 27

xv

Chapter 1

Introduction

Traditionally, software was written to execute sequentially. However, rapid technological advance-
ments led to physical limitations such as thermal constraints and clock speed, prompting proces-
sor manufacturers to pivot from enhancing single-processor performance to developing multi-core
architectures. This shift marks the transition from monolithic architectures to parallel and concur-
rent computing, introducing a series of advantages such as increased performance and enhanced
interprocess communication in distributed systems.

Communication in distributed systems and parallel and concurrent programming is crucial for
connecting the world. It enables different systems and processes to work together seamlessly,
facilitating efficient data sharing and task coordination across multiple locations. This intercon-
nectedness not only boosts application performance and supports real-time collaboration but also
drives innovation in diverse fields, from global communications to complex scientific computa-
tions. Ensuring effective system communication lays the foundation for a more integrated and
responsive technological landscape, ultimately bridging gaps and fostering global connectivity.

Effective communication in parallel and concurrent computing is crucial for several reasons.
It ensures proper task coordination and synchronization across multiple processors, maintains data
consistency, optimizes performance by reducing latency and efficiently utilizing bandwidth, and
enhances fault tolerance and reliability by managing errors and maintaining system consistency.

Despite these benefits, parallel and concurrent programming introduces its own set of chal-
lenges. The growing demand for that programming paradigm in distributed systems has led to the
development of specialized tools and programming languages designed to handle parallelism and
concurrency efficiently. Languages such as Erlang [2] and Go [4] were created with these needs in
mind while existing languages like Java [6] have evolved to include features that facilitate concur-
rent programming. The increasing accessibility of these tools has fostered the widespread adoption
and establishment of this paradigm in distributed systems.

Moreover, these programming languages rely on typing systems and parallel and concurrent
programming models to minimize the chances of system failure. Regardless of the number of
processors in use, it is crucial that a program behaves as expected. A predefined communication
protocol must be strictly followed to prevent process cooperation from breaking down, ensuring it
will never diverge from its definition.

1

Chapter 1. Introduction 2

Programming paradigms

Programming languages have evolved alongside the advancement of parallel and concurrent com-
puting, integrating essential tools such as modules and frameworks tailored for emerging program-
ming paradigms. These tools enable developers to implement efficient solutions across diverse
problem domains, leveraging modern multi-processor architectures.

Frameworks addressing programming paradigms have become integral components of pro-
gramming languages. They empower developers to handle complex computational tasks effec-
tively, enhancing scalability and performance in real-world applications. By integrating these
tools, languages not only streamline development processes but also ensure that applications are
optimized to meet the challenges posed by concurrent processing.

In essence, modern programming languages have adapted to support robust parallel and con-
current paradigms, crucial for fully utilizing multi-processor systems and managing the complex-
ities of concurrent programming.

The FreeST programming language

FreeST [3, 11] is a modern, message-passing concurrent functional language featuring context-free
session types, ensuring strict adherence to communication protocols among participants.

Session types [32, 33, 34] were proposed to describe structured communication patterns and
designed for concurrent settings. With the help of a powerful static type-checker, the commu-
nication behaviour of agents in distributed systems can be verified, guaranteeing that all agents
involved in a communication strictly follow the protocol. However, protocols allowed by tradi-
tional session types are limited. As proposed by Thiemann and Vasconcelos [50], context-free
session types solve this limitation by breaking tail recursion and enabling non-regular recursion.

Despite effectively addressing structured communication patterns with session types, FreeST
remains an embryonic and academically oriented language with limitations in practical, real-world
applications. Currently, FreeST provides only basic primitives for concurrent programming, lack-
ing comprehensive frameworks and tools for diverse programming paradigms that facilitate the
development of complex parallel and concurrent systems.

Consequently, FreeST demands substantial domain knowledge and effort to develop parallel
and concurrent systems effectively, posing challenges even for programmers familiar with the lan-
guage. This results in a steep learning curve and substantial effort to establish essential boilerplate
code, diverting attention from addressing a problem’s logic. For instance, if a developer wants to
distribute data among multiple processes to compute an algorithm in parallel, they must establish
the interprocess communication framework before concentrating on the algorithm itself. This con-
straint significantly limits FreeST’s viability as a practical choice to address the broader spectrum
of challenges in parallel and concurrent programming.

To adapt FreeST for real-world parallel and concurrent programming, it is essential to expand
the language, making it more versatile and practical for solving parallel and concurrent problems.
This requires integrating modules that address well-known parallel and concurrent programming

Chapter 1. Introduction 3

paradigms, creating a rich environment that meets programmers’ needs. Our goal is to make
parallel and concurrent programming in FreeST easier, thus making FreeST a more viable option
for real-world scenarios.

In this thesis we aim to adapt well-known parallel and concurrent programming paradigms to
FreeST, developing new tools that leverage the language’s features. We explore topics such as data
parallelism [37], embarrassingly parallel problems [27], futures [1, 14], the divide-and-conquer
paradigm [21], and stream programming [10, 17]. We aim to design coherent and valuable tools
by analyzing how FreeST interacts with these concepts, while remaining true to the language’s
unique characteristics and philosophies.

Contributions This work focuses on the design and implementation of three modules, proposing
their integration into the FreeST programming language to simplify how programmers approach
these concepts and improve their efficiency:

• The Parallel module addresses data parallelism and provides a programming environment
with a set of abstractions that facilitate the implementation of embarrassingly parallel prob-
lems.

• The Futures module provides abstractions to launch asynchronous computations, equipping
FreeST with a novel synchronization method that opens doors to address the divide-and-
conquer paradigm.

• The Streams module abstracts the inherent concurrent stream programming paradigm in
FreeST through a series of definitions and abstractions, promoting more structured and well-
defined programming practices.

Outline The remainder of this document is organized as follows: Chapter 2 contextualizes this
work within relevant terminology, distributed system concepts, and concurrent programming pat-
terns and paradigms. It also includes an overview of some programming languages and related
work; Chapter 3 introduces the FreeST programming language, detailing its features, innova-
tions, advantages, and concurrency challenges; Chapter 4 discusses the design, implementation,
and usage examples of the developed modules; Chapter 5 describes the validation process for our
contributions and presents the respective results; finally, Chapter 6 is reserved for conclusions
and suggestions for future research in parallel and concurrent programming within the FreeST
programming language.

Chapter 1. Introduction 4

Chapter 2

Background

This chapter provides the necessary foundation for understanding the topics discussed in subse-
quent chapters. We delve into key parallel and concurrent terminology and concepts, offer an
overview of some programming languages featuring concurrent capabilities, and dedicate a sec-
tion to examining related work that has influenced our design and implementation decisions.

2.1 Terminology and concepts

Parallelism and concurrency

In multicore systems, where a single processing chip contains multiple computing cores, multi-
threaded programming becomes essential to provide a mechanism for efficiently utilizing these
cores and enhancing concurrency.

Two fundamental terms in this context are parallelism and concurrency [41, 47]. Although
often used interchangeably, they are, by definition, distinct concepts.

Parallelism Involves leveraging the computational hardware multiplicity, i.e., multiple comput-
ing cores, to increase the overall efficiency of a computation. A parallel system is capable of
executing multiple tasks simultaneously, so it is possible to achieve computation results earlier by
distributing the workload across different processes.

Concurrency A program-structuring technique where multiple threads of control execute com-
putations simultaneously instead of sequentially, creating the perception of interleaved results and
effects for the user.

Communication models

Interprocess communication can be managed using several well-known models, with the two most
essential being the shared-memory and message-passing models [47].

5

Chapter 2. Background 6

Shared-memory Processes create and gain access to common regions of memory owned by
other processes by agreeing to remove a few memory access restrictions. This model establishes
a region of memory shared by the cooperating processes for interprocess communication.

Message-passing Processes exchange messages seeking to transfer information between them,
coordinate activities, and share data by sending and receiving messages.

The shared-memory model in distributed systems faces synchronization challenges, such as
ensuring data consistency and avoiding conflicts in data access. This model is predominant in
multiprocessing environments where processes operate on the same machine, enhancing commu-
nication efficiency and convenience. Conversely, the message-passing model is efficient for ex-
changing smaller amounts of data because there is no need to avoid conflicts, and synchronization
is easier to manage. However, it entails a higher communication overhead than the shared-memory
communication model.

Communicating Sequential Processes The message-passing model was significantly popular-
ized by Tony Hoare’s Communicating Sequential Processes (CSP) [31], a formal language de-
veloped in the late 1970s for describing interaction patterns in concurrent systems. CSP intro-
duced a rigorous framework for process synchronization through message exchanges, establishing
message-passing as a robust and reliable communication model.

Synchronization

There are significant differences in synchronizing cooperating processes through the shared-memory
and message-passing communication models [27, 47, 49].

In the shared-memory model, multiple processes share a common memory space, requiring
synchronization to coordinate accesses and prevent race conditions. Race conditions occur when
several processes access and manipulate the same data concurrently, influencing the result by
the order in which access occurs. Key synchronization mechanisms in shared-memory systems
include:

• Mutual exclusion: Processes must synchronize access to shared resources to prevent race
conditions using locks, semaphores, or other synchronization primitives.

• Atomic operations: Provides read-modify-write operations without explicit locking.

• Deadlock avoidance: Implementing techniques to prevent or detect scenarios where pro-
cesses wait indefinitely for each other to release locks.

In the message-passing model, processes synchronize by coordinating the sending and receiv-
ing of messages, which can be either blocking (synchronous) or nonblocking (asynchronous):

Chapter 2. Background 7

• Synchronous: Both sending and receiving operations are blocking—the sender blocks until
the receiver retrieves the message, and the receiver blocks until a message arrives—ensuring
synchronization with every message.

• Asynchronous: The send operation is non-blocking, allowing the sender to continue exe-
cution without waiting for the receiver’s response, while the receive operation can either
be blocking or non-blocking. In the non-blocking variant, the receiver continues executing
after calling the receive operation, whereas in the blocking variant, the receiver blocks until
a message arrives.

2.2 Programming paradigms

Regardless of the communication model and type of synchronization, every concurrent program-
ming language addresses certain widely-known programming paradigms to enhance the parallel
and concurrent programming experience. Some languages provide specialized tools to handle
them, while others adapt through their existing core features.

2.2.1 Embarrassingly parallel problems

An embarrassingly parallel problem [27] where minimal effort is required to separate the problem
into multiple parallel tasks. This is often the case where there is little to no dependency or need
for communication or results among the parallel tasks.

Essentially, these problems can be divided into independent chunks of work that can be dis-
tributed across several threads, executing concurrently, thereby achieving greater performance.

Data parallelism Embarrassingly parallel problems are well-suited for data parallelism [37],
where data is divided into subsets and processed simultaneously by multiple processors. Since
each task operates independently on different data chunks, data parallelism maximizes resource
utilization and speeds up computation. This approach is ideal for applications like image process-
ing and simulations, where the same operation is performed on different data segments in parallel,
enhancing efficiency and performance.

Estimating ω through the Monte Carlo method

The Monte Carlo method is a classic example of an embarrassingly parallel problem [45]. This
technique relies on repeated random sampling to obtain numerical results for deterministic prob-
lems. One common application is the estimation of ω.

Consider a scenario where darts are randomly tossed at a square dartboard defined by the
opposing vertices (→1,→1) and (1, 1). Within this square is an inscribed circle with a radius of
1, resulting in an area of ω. Assuming the darts are uniformly distributed and consistently land
within the square’s boundaries, the ratio of darts landing inside the circle to the total number of
darts should approximately satisfy the following equation:

Chapter 2. Background 8

number in circle

total number of tosses
=

ω

4

We are perfectly capable of parallelizing this problem. Multiple threads can independently toss
the same amount of darts, each returning the number in circle to the main thread. This parallel
approach is significantly more efficient than a sequential one. The following diagram illustrates
the parallelized problem divided among three threads, where x = total number of tosses / 3:

Figure 2.1: Sequence diagram of the ω estimation through the Monte Carlo method

Henceforth, any reference to the Monte Carlo method will refer to its use in estimating ω.

2.2.2 Futures and promises

The terminology and implementations of futures and promises can vary across programming lan-
guages and paradigms, making precise definitions challenging.

A future [14] is a concept originally introduced as the representation of a promise to deliver
the value of an expression—that was given to the evaluator—at some later time. A process is
created for each newly created future to evaluate a given expression. When the value of a future is
explicitly needed, if the evaluation has finished, it is immediately available; otherwise, the process
waits until it completes.

In the broadest sense, both futures and promises can be seen as a value that will eventually
become available [1]. When a task starts, a future is returned immediately, allowing the program
to continue executing; the future will eventually hold the task’s result upon completion. However,
there are essential differences between these concepts:

Chapter 2. Background 9

• A future is a read-only placeholder for a result yet to be computed asynchronously.

• A promise is a writable, single-assignment variable that completes a future. It can complete
a future with a value to indicate success or an exception to indicate failure.

In Scala, futures and promises are non-blocking, utilizing callbacks instead of typical blocking
operations. However, in many implementations, futures are blocking; once a process requires its
result, it must block its computation and wait until the future is completed.

To support these functionalities, futures libraries typically provide methods to create and return
futures, check if a task has been completed, block until the result is available, or attach callbacks
that will be invoked when the result is ready.

Common applications of futures and promises are parallelism and concurrency, asynchronous
I/O operations, web development, asynchronous event handling, data streaming, deferred execu-
tion, and resource management.

2.2.3 Divide-and-conquer

Divide-and-conquer [21] is a simple yet powerful programming paradigm in which an algorithm
recursively breaks down problems into smaller sub-problems until they become simple enough to
solve directly. The solutions to the sub-problems are then combined to solve the original problem.

In other words, there is a base case—solving the problem directly—and the recursive case,
performing the following three steps:

1. Divide: Break down a problem into two or more smaller sub-problems.

2. Conquer: Solve the sub-problems recursively.

3. Combine: Merge the sub-problems’ results into the solution of the original problem.

A divide-and-conquer algorithm resembles a tree structure. The initial task splits into branches
that continue to divide until they reach the base cases (the leaves). The results from these leaves
are combined, propagating back up the tree until the final result is obtained.

Common problems addressed by divide-and-conquer include sorting algorithms and problems
based on a recurrence relation. A recurrence relation is an equation where the nth term of a se-
quence derives from some combination of its preceding terms. A classic example is the Fibonacci
sequence.

The Fibonacci sequence

In mathematics, the Fibonacci sequence [21] defines each number as the sum of the two preceding
ones. The sequence commonly starts from 0 and 1, with the first few values being
{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144}.

We can formally define the Fibonacci numbers using the following recurrence relation (for
n > 1):

Chapter 2. Background 10

F0 = 0, F1 = 1, (2.1)

Fn = Fn→1 + Fn→2 (2.2)

Since each number in the Fibonacci sequence equals the sum of the two preceding ones, we
can break down the problem Fn into the two sub-problems Fn→1 and Fn→2. The solutions to these
sub-problems are then combined to provide the solution to the original problem. The base cases of
the Fibonacci sequence correspond to Equation 2.1, while the recursive case aligns with Equation
2.2. This description matches the divide-and-conquer paradigm.

2.2.4 Streams

In programming languages, streams [10, 17] are sequences or flows of data elements that can be
continuously and sequentially read from or written to. They are widely used for handling input and
output operations, especially when dealing with large volumes of data or when data is produced
or consumed over time.

Streams abstract the underlying details of reading and writing data, making it easier for pro-
grammers to work with different data sources and destinations without worrying about the specific
implementation details. They provide a uniform interface to interact with various data sources,
such as files, network sockets, standard I/O, and more.

Functions that process data by maintaining endpoints to send and receive data elements within
streams are known as filters. Pipelines are formed by linking multiple filters in a sequence, en-
abling efficient and systematic data processing as it flows through different stages. This stream
composition enhances the flexibility and expressiveness of stream-based applications, facilitating
complex data processing tasks in a scalable manner.

Moreover, streams are commonly used in parallel and concurrent programming scenarios.
They play a significant role in efficiently handling data processing tasks, especially when working
with multiple cores, threads, or processing units.

2.3 Concurrency in programming languages

Concurrent programming languages enable the simultaneous execution of processes or threads,
structuring a program to handle multiple tasks at once.

There are numerous concurrent programming languages, each with unique characteristics, fea-
tures, use cases, and advantages. This section reviews some relevant concurrent programming
languages, categorized by their communication model and synchronization methods.

Concurrent programming languages generally fall into two categories:

• General-purpose languages with support for concurrency: These languages have pri-
mary purposes beyond concurrency but offer libraries and frameworks for concurrent pro-
gramming. Examples include Rust [7, 18] and Java [26, 27]. Moreover, Haskell [5, 41] is

Chapter 2. Background 11

another poignant example, as it is an essential reference in functional programming for its
powerful concurrency tools.

• Languages designed for parallelism and concurrency: These languages were developed
to address parallelism and concurrency, offering specialized primitives for such tasks. Ex-
amples include Go [22], Erlang [13], and StreamIt [8].

When comparing programming languages, it is important to distinguish them based on their
programming paradigm. The two main paradigms are:

• Imperative languages: These languages, such as Rust, Java, and Go, instruct a machine on
how to change its state.

• Declarative languages: These languages, such as Erlang and Haskell, declare properties of
the desired result without specifying how to compute it. Erlang and Haskell are functional
languages expressing results through a series of function applications.

Except for Erlang, most of these languages support shared-memory and message-passing com-
munication models but tend to be more suited for one of them. Below is an overview of how each
language approaches these communication models:

Rust Rust does not prescribe a specific communication model. As a low-level system program-
ming language, Rust prioritizes control to achieve more nuance and efficiency in handling concur-
rency, providing synchronization mechanisms for shared-memory communication. Moreover, the
language supports (mainly) asynchronous channels for message-passing.

Java Java, a versatile language, primarily uses shared-memory communication through built-in
primitives and packages. While it can implement message-passing (e.g. the producer-consumer
[27] design pattern or the actor model [29, 28]), it is not designed for this model by default,
requiring additional workarounds and effort.

Haskell Haskell offers powerful concurrency through its Concurrent Haskell library [35, 41],
which provides abstractions to launch and manage lightweight threads. These threads can commu-
nicate by sharing memory via MVars or using software transactional memory (STM) for atomic
memory operations. Haskell also supports message-passing between threads through buffered
(asynchronous) channels. Additionally, it uses sparks, lightweight units of computation scheduled
to a pool for execution when processors are available.

Go Go features goroutines (lightweight threads) and channels, primarily using message-passing.
Go’s channels are synchronous by default but can be made asynchronous by adjusting the buffer
size. Moreover, Go also supports shared-memory and some of its mechanisms through packages.

Chapter 2. Background 12

Erlang Erlang is an asynchronous message-passing programming language that employs the
actor model, where processes communicate via mailboxes instead of channels.

StreamIt Unlike the others, StreamIt is a streaming-oriented language designed for real-time
data processing. It emphasizes pipeline parallelism, where filters execute concurrently within a
stream. We will discuss it more in-depth in the next section.

2.4 Related work

Parallel and concurrent programming has seen the development of various tools and techniques to
address the previously discussed concepts and patterns. This section provides an in-depth overview
of existing tools and approaches directly related to the goals and ambitions of this thesis, helping
to contextualize our contributions and the decisions behind them.

2.4.1 Message-Passing Interface

The Message-Passing Interface (MPI) [43, 36] is a message-passing library interface specifica-
tion that primarily addresses the message-passing parallel programming model. It facilitates the
exchange of data between processes through cooperative operations, harnessing data parallelism
effectively. MPI is a specification, not an implementation or a language, in which all operations are
expressed as functions, subroutines, or methods aligned with language bindings. As a reference,
programming languages such as C and Fortran support popular MPI implementations.

MPI supports the multiple instruction multiple data (MIMD) paradigm, where different pro-
cessors execute different instructions on different data sets simultaneously. Within MIMD, MPI
also accommodates the single program multiple data (SPMD) model, in which processors execute
the same program but on different data subsets, possibly following different execution paths [37].
In MPI, processes execute the same program but might have different inputs or data subsets to
work on or take different execution paths based on their rank.

In a distributed communication environment, the benefits of standardization are significant, as
higher-level routines and abstractions build upon low-level message-passing routines. MPI aims
to establish a widely used standard for writing message-passing programs by enabling efficient
communication, supporting heterogeneous environments, and providing a reliable communication
interface.

MPI’s capability to harness data parallelism makes it particularly effective for embarrassingly
parallel problems, where tasks can be divided into independent subsets, enabling concurrent pro-
cessing with minimal inter-task communication.

This overview focuses on explaining and demonstrating MPI through its implementation in C.

Groups and communicators

In order to define communication contexts and groups, we need to introduce a few notions first.

Chapter 2. Background 13

Communicators specify the communication context for a communication operation. Each
communication context establishes an independent “communication world”, ensuring that mes-
sages sent in different contexts do not interfere.

A group (or group of processes) defines an ordered collection of processes, each associated
with a unique identifier (i.e., a rank). Although groups might be manipulated separately from
communicators, only communicators can be used in communication operations; hence, groups
are often used within a communicator to describe the participants in a “communication world”,
distinguishing them through their respective ranks.

Furthermore, communicators are divided into intra-communicators for operations within a
single group of processes and inter-communicators for operations between two groups of pro-
cesses. Intra-communicators are most commonly used for message-passing in MPI. In contrast,
inter-communicators might be useful when an application is built by composing parallel modules,
allowing these modules to communicate. This overview focuses on intra-communicators.

The point-to-point and collective communication

MPI defines a few relevant communication types, particularly point-to-point and collective com-
munication.

In MPI, the definition of blocking and non-blocking communications hold a different meaning
from our synchronization terminology, and we will not discuss those nuances of the specification.

Point-to-point communication Is the most basic mechanism of MPI, involving direct sending
and receiving of messages between processes. In C, this communication is achieved through
the MPI_Send and MPI_Recv operations, varying from implementation to implementation. To
understand how this mechanism works, consider the following code example:

1 int world_rank;

2 MPI_Comm_rank(MPI_COMM_WORLD, &world_rank);

3 int world_size;

4 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

5
6 int number;

7 if (world_rank == 0) {

8 number = -1;

9 MPI_Send(&number, 1, MPI_INT, 1, MPI_ANY_TAG, MPI_COMM_WORLD);

10 } else if (world_rank == 1) {

11 MPI_Recv(&number, 1, MPI_INT, 0, MPI_ANY_TAG, MPI_COMM_WORLD,

MPI_STATUS_IGNORE);

12 printf("Process 1 received number %d from process 0\n", number);

13 }

Figure 2.2: MPI - Point-to-point C code example

First, the program sets up the communication world using MPI_Comm_rank and
MPI_Comm_size to establish each process’s world size and rank. Then, if the executing pro-

Chapter 2. Background 14

cess holds rank zero, it initializes a number to →1 and sends it to process one using MPI_Send. If
the executing process holds rank one, it calls MPI_Recv to receive and print the number.

MPI supports different communication modes, such as standard, buffered, and synchronous,
catering to different needs for synchronization and buffering. MPI_Send satisfies the standard
mode, letting MPI decide whether or not to buffer outgoing messages. MPI_BSend addresses the
buffered mode, and the operation’s completion does not depend on a matching receive. At last, in
the synchronous mode, MPI_SSend completes successfully only if a matching receive is called.
Therefore, point-to-point communication allows synchronous and asynchronous communication
depending on the user’s needs.

Collective communication Involves all participants in a group of processes associated with a
communicator. The core patterns this communication covers are:

Barrier Forms a barrier where no processes in the communicator can pass until all of them call
the operation, i.e., it behaves as synchronization across all processes in a group.

Figure 2.3: MPI - Illustration of the barrier pattern

Broadcast Sends the same data from one process to all processes.

Figure 2.4: MPI - Illustration of the broadcast pattern

Chapter 2. Background 15

Scatter Sends data from one process to all processes, distributing chunks of an array to different
processes.

Figure 2.5: MPI - Illustration of the scatter pattern

Gather Receives elements from all processes and gathers them into a single process.

Figure 2.6: MPI - Illustration of the gather pattern

Reduce Takes an array of elements on each process and sends its reduced result to a single
process. Examples could be folding a list by applying a combining function, such as summing
numbers.

Figure 2.7: MPI - Illustration of the reduce pattern

Allgather and allreduce Variation of gather and reduce where all processes receive the result.

Figure 2.8: MPI - Illustration of the allgather and allreduce MPI patterns

Chapter 2. Background 16

All participants in the communication must call the collective operation. This holds for both
intra-communicators and inter-communicators.

As observed above, some patterns have a single sending or receiving process called root. Usu-
ally, arguments in the function of the operations allow specifying which rank is the root process,
so the operation knows to whom to attribute a different behaviour. For example, in the scatter
operation, specifying the root as the process of rank 0 ensures that whenever that process calls
the operation, it will distribute the contents of a structure to the remaining participants while they
receive a chunk of the original contents.

Implementing Monte Carlo

A practical example might help provide a clearer understanding of collective communication.
Consider the following MPI implementation of the Monte Carlo method described in Section
2.2.1:

1 MPI_Bcast(&n_points, 1, MPI_INT, 0, MPI_COMM_WORLD);

2
3 int points_per_proc = calculate_points_per_process(n_points, size);

4 local_count = calculate_local_count(points_per_proc);

5
6 MPI_Reduce(&local_count, &total_count, 1, MPI_INT, MPI_SUM, 0,

MPI_COMM_WORLD);

7
8 if (rank == 0) {

9 calculate_and_print_pi(total_count, n_points);

10 }

This program demonstrates how to divide work across processes, perform computations on
a broadcasted value, and reduce the results to a final result. Unlike the representation in Fig.
2.1, MPI implementations also use its root process to solve the problem. The program takes the
following steps:

1. The process of rank 0 broadcasts the number of points to all processes.

2. Each process calculates its portion of tosses (points) and the corresponding count of points
inside the circle.

3. Reduce all local counts to get the total count.

4. Process 0 calculates and prints the estimation of ω.

While there are more nuanced and specific collective operation variants, this demonstration
focuses on the essential aspects of MPI; thus, we will refrain from discussing them.

At last, it is important to note that collective communication calls can use the same commu-
nicator as point-to-point communication since MPI guarantees that messages exchanged through
collective communication will not be confused with those exchanged through point-to-point com-
munication.

Chapter 2. Background 17

2.4.2 ForkJoin

ForkJoin [20] is a technique for solving problems recursively by splitting them into subtasks run-
ning in parallel. This involves breaking down a part of the problem and then waiting and con-
verging to compose the final results. It is the idea of constructing and managing queues of tasks
and worker threads as concurrent versions of divide-and-conquer algorithms. Lea, who developed
ForkJoin more in-depth, also proposed a Java implementation [39, 40].

There are two operations in ForkJoin: fork and join. The fork operation starts a new
parallel subtask, while the join operation impedes the current task from proceeding, waiting
until the forked subtask has finished its work. The most well-known algorithms are recursive in
order to employ divide-and-conquer by splitting tasks until they are simple enough to be solved
sequentially.

Figure 2.9: ForkJoin - A representation of the fork and join operations

These tasks have simple and regular synchronization and management requirements and more
efficient scheduling tactics than general-purpose threads. While tasks are instances of a lightweight
executable class, threads are not. Thread frameworks are often too heavy for most ForkJoin pro-
grams because the cost of constructing and managing a thread can exceed the computation time of
a task itself. However, removing overhead or tuning thread scheduling is impossible since threads
form the basis of many other concurrent and parallel programming styles.

A control and management entity sets up the worker threads pool and initiates threads as
needed. Each thread processes tasks from a queue, managed and executed by the queuing and
scheduling discipline.

Chapter 2. Background 18

A ForkJoin framework includes a work-stealing scheduler. Work-stealing is a tactic to opti-
mize thread usage by allowing a worker thread with an empty scheduling queue, i.e., no local tasks
to execute, to attempt to take one from another (randomly) chosen worker. This process is called
stealing.

Task granularity

Another important factor of ForkJoin is the task granularity of regular and irregular parallel pro-
grams, which refers to the number and size of tasks created to perform a given computation. If the
granularity is too coarse and tasks are too large, there will be insufficient parallelism. Conversely,
if the granularity is too thin, excessive context switching between tasks reduces efficiency.

Task granularity can be controlled by limiting new task creation and executing workloads se-
quentially. This is achieved through algorithms defining criteria for executing tasks sequentially
or concurrently. The most well-known algorithms are MaxTasks, MaxLevel, Adaptive Tasks Cut-
off, Load-Based, and Surplus Queued Task Count. Other algorithms, such as Max Queue Size,
StackSize, and MaxTasks with StackSize, may be used depending on the specific problem and re-
quirements [19, 23, 24].

Implementing the Fibonacci sequence

The ForkJoin framework provides a parallel approach for implementing the Fibonacci sequence.
Below is the Java implementation:

1 public class ForkJoinFib extends RecursiveTask<Integer> {

2 private int n;

3
4 public ForkJoinFib(int n) { this.n = n; }

5
6 @Override

7 protected Integer compute() {

8 if (n == 0 || n == 1) return n;

9
10 ForkJoinFib f1 = new ForkJoinFib(n - 1);

11 f1.fork();

12
13 ForkJoinFib f2 = new ForkJoinFib(n - 2);

14 f2.fork();

15
16 return f1.join() + f2.join();

17 }

18
19 public static void main(String[] args) {

20 ForkJoinFib fib = new ForkJoinFib(47);

21 fib.compute();

22 }

23 }

The main function initializes a ForkJoinFib object with the number 47 and invokes the task,
which executes the compute function on an independent thread.

Chapter 2. Background 19

The critical part is the compute function, where the Fibonacci sequence calculation occurs.
The function splits the problem into two sub-problems by creating two new ForkJoinFib ob-
jects. It forks the sub-problems, allowing them to process in parallel. The first sub-problem com-
putes the Fibonacci number for n→1, while the second computes the Fibonacci number for n→2,
representing the computation of the preceding numbers. The results from these sub-problems are
combined by joining the first task and adding it to the second result.

This process repeats in each branch until it reaches a base case (0 or 1), returning the base
value directly. As tasks complete, their results are combined, gradually building the solution from
the base cases to the final result.

While this implementation effectively demonstrates parallelism, it is relatively inefficient re-
garding time complexity and thread management, resulting in high memory usage. Enhancements
in granularity control and task management can improve its performance.

2.4.3 StreamIt

In contrast to the little language support for practical, large-scale stream programming, StreamIt
[51, 9] is a programming language designed specifically for modern stream programming.

Streaming applications process continuous streams of data, such as multimedia processing,
signal processing, and network packet processing.

Ultimately, the StreamIt programming language aims to simplify the coding of signal process-
ing and other streaming computations while performing stream-specific optimizations for high-
performance programming. The language has two main goals: providing high-level stream ab-
stractions that improve programmer productivity and program robustness within the streaming
domain and serving as a standard machine language for grid-based processors.

StreamIt programs are stream graphs containing blocks with a single-input and a single-output,
describing the function of atomic blocks and the structure of composite blocks.

Filters

Filters are the most basic units of StreamIt, where all computation takes place. Each filter has
a work function, allowing a filter to communicate with other blocks through the input/output
channels (FIFO queues). These channels support three operations:

• pop(): removes an item from the end of the channel and returns its value.

• peek() or peek(i): returns, without removing, the value of the last item in the channel or
the item i spaces from the end of the channel, respectively.

• push(x): writes x on the front of the channel.

Filters also have an init function, called at initialization time, responsible for establishing
the filter’s initial state and specifying its I/O types and data rates.

Chapter 2. Background 20

Constructs

In order to compose filters, StreamIt provides three distinct constructs: Pipeline, SplitJoin and
FeedbackLoop. These constructs specify predefined ways to connect filters into single-input and
single-output blocks.

The most basic stream composite is the Pipeline, which allows for building a filter sequence.
Filters are added to the Pipeline through calls to the add function.

SplitJoins are used to specify independent parallel streams that diverge from a common splitter
and merge into a common joiner. Incoming data passes through a splitter, is redistributed to the
child streams for processing, and then recombined through a joiner into a single output stream.
Like in Pipelines, calls to add specify the filters of a SplitJoin. Furthermore, three splitter types
determine how to distribute items from the input of the SplitJoin to the parallel components:

• duplicate: replicates each data item and sends a copy to each parallel stream.

• roundrobin: distributes each item to one of the child streams in order. It is possible to
specify the number of items distributed to each child.

• null: indicates that no parallel components require any input, and there are no input items
to split.

Similarly, two joiner types specify how to receive the outputs of the parallel streams on the out-
put channel of the SplitJoin: roundrobin and null, both behaving according to their respective
splitter types.

Finally, FeedbackLoop provides a way to create cycles (loops) in the stream graph. Each
FeedbackLoop contains the following components:

• A body stream (setBody): the block around which a backwards “feedback path” is created.

• A loop stream (setLoop): performs some computation along the feedback path.

• A splitter (setSplitter): distributes data between the feedback path and the output chan-
nel at the bottom of the loop.

• A joiner (setJoiner): merges items between the feedback path and the input channel at
the top of the loop.

In other words, a FeedbackLoop has a body stream whose output passes through a splitter; one
branch of the splitter leaves the loop, and the other goes to the loop stream. The output of the loop
stream and the loop input go through a joiner to the body’s input.

Implementing the moving average algorithm

In statistics, a moving average is a calculation to analyze data points by creating a series of av-
erages of different selections of the complete data set. This technique can, for instance, be used

Chapter 2. Background 21

as a forecasting method [12]. The following snippet of code is a simplified implementation of the
moving average using the StreamIt programming language:

1 void->void pipeline MovingAverage {

2 add IntSource();

3 add Averager(10);

4 add IntPrinter();

5 }

6
7 int->int filter Averager(int n) {

8 work pop 1 push 1 peek n {

9 int sum = 0;

10 for (int i = 0; i < n; i++)

11 sum += peek(i);

12 push(sum / n);

13 pop();

14 }

15 }

The MovingAverage pipeline comprises of three primary filters: the IntSource, Averager
and IntPrinter. Here is how it operates:

• IntSource: Generates a continuous stream of integers.

• Averager: Computes the moving average over a window size of ten. As each integer ar-
rives in the stream, it includes this integer in its computation, maintaining a sliding window
of the last ten integers. It then calculates the average of these integers and outputs each
result.

• IntPrinter: Receives and prints all computed moving averages.

The Averager filter dynamically adjusts its computation with each incoming integer. It con-
tinuously recalculates the moving average based on the most recent ten integers in the stream,
ensuring that IntPrinter receives and prints each computed average in real time.

Chapter 2. Background 22

Chapter 3

The FreeST programming language

In this chapter, we delve into the essential characteristics of the FreeST programming language,
laying the groundwork for understanding the nuances of its unique features and challenges con-
cerning parallel and concurrent programming.

FreeST [11] stands out as an asynchronous message-passing concurrent functional program-
ming language, distinguished by its powerful type system centred around session types. Session
types enable the specification of communication protocols. FreeST’s type system governs the in-
teractions on communication channels, ensuring that if a program is typable, i.e., passes the type
checker, it correctly adheres to the specified protocol.

Implemented in Haskell, FreeST closely resembles the language’s syntax and leverages its
concurrency and channel features.

3.1 Session types

The most distinctive characteristic of the FreeST programming language is the integration of ses-
sion types.

Session types, which form the core of communication through channels in FreeST, were ini-
tially introduced by Honda et al. [32, 33, 34]. They focus on binary (two-party) sessions with
well-defined protocols between two endpoints, guaranteeing that communication errors never oc-
cur within a session. The session communication protocols are defined based on the four session-
type constructors outlined in Table 3.1.

This defines a kind of point-to-point message-passing communication in a channel and guar-
antees that a communication never goes wrong by ensuring that messages are sent and received in
the exact specified order.

Each participant in the communication holds an endpoint of opposite types, describing the
actions required to follow the protocol.

To understand how it works, let us consider a one-to-one client-server communication exam-
ple. In this scenario, the client wishes to send an integer to the server and receive another.

Accordingly, from the client’s perspective, the protocol is as follows:

ClientChannel = !Int;?Int

23

Chapter 3. The FreeST programming language 24

Constructor Description

!T Message sending, send T .

?T Message receiving, receive T .

↑{li : Ti}
Internal choice. Branch selection, select li, and con-
tinue as Ti.

&{li : Ti}
External choice. Branch matching, match li, and
continue as Ti.

T ;U Sequencial composition. Do T , then U .

Table 3.1: FreeST - Session type constructors

Whereas, from the server’s perspective, the appropriate protocol is:

ServerChannel = ?Int;!Int

Note that these protocols are each other’s reflections, i.e., the server’s protocol is the opposite
of the client’s. Furthermore, this means the communication is not one-sided: if the client sends a
value, the server receives it. This relation is known as duality, where each protocol is dual to the
other. In other words, we can rewrite the definition for ServerChannel as follows:

ServerChannel = dual ClientChannel

While the basic constructors are somewhat intuitive, the remaining two are more interesting
and allow for more expressive and elaborate scenarios. Selection and branching introduce what
can be interpreted as the power of options within protocols. Given the previous example, based
on the client’s decisions, we can now rewrite the protocol to work with several options offering
different behaviours. For instance, we are allowed to have the following protocol:

ClientService = ↑{IsOdd: !Int;?Bool,

Succ: !Int;?Int}

This protocol allows the client to choose between two options, triggering two different contin-
uation behaviours.

Accordingly, the server-side protocol of the communication needs to match the client’s proto-
col, i.e., it should be dual to it:

ServerChannel = dual ClientChannel

Or, in more explicit terms:

ServerService = &{IsOdd: ?Int;!Bool,

Succ: ?Int;!Int}

If the client selects the branch IsOdd, the server serves it by receiving an integer and sending
a boolean back. If the Succ branch is selected, the server receives and sends an integer instead.
So, in this sense, the server’s protocol is dual to the client’s.

These protocols are ensured to be fulfilled by a type checker, guaranteeing that every element

Chapter 3. The FreeST programming language 25

in a channel is consumed by sending or receiving values accordingly until the channel is closed.
If this is not confirmed, the program is considered not well-typed (or typable).

Another notable feature of session types is recursion, allowing the creation of recursive pro-
tocols combined with branching. This capability is particularly powerful in scenarios involving
protocols for binary trees. However, in regular session types a limitation arises due to the need for
an auxiliary stack to reconstruct structures like binary trees. To address this limitation, Thiemann
and Vasconcelos [50] proposed context-free session types, breaking tail recursion and enabling
non-regular recursion. Notably, FreeST implements context-free session types.

Session types in FreeST

FreeST relies on polymorphism to type its channels properly, requiring a kinding system to check
the formation of types. A kind consists of a pair composed of a basic kind and a multiplicity. Basic
kinds distinguish functional types (T) from session types (S). Multiplicities control the number
of usages of a value in a given context: exactly one (linear - 1) or zero or more (unrestricted - ↓).
We have the following subkinding relation:

1T

1S↓T

↓S

This subkinding relation allows an unrestricted type when a linear one is required, and session
types (1S, ↓S) can be used in place of an arbitrary type (1T).

For the message-passing communication, FreeST supports linear and shared channels, which
work with linear (1S) and unrestricted (↓S) session type protocols, respectively. Linear channels
restrict communication to one-to-one relations, while shared channels eliminate this restriction,
allowing for all types of relations: one-to-many, many-to-one, many-to-many, and one-to-one.

Initially, FreeST only supported linear session types. Barros et al. [16] proposed the imple-
mentation of shared channels for the FreeST programming language, introducing session initia-
tion, which combines both linear and shared session types. This addition breaks with the restric-
tion of the limited one-to-one communication pattern and allows communication between more
than two parties, making FreeST a much more flexible and mature language prepared for various
real-world situations and scenarios.

Returning to the client-server example, its implementation depends on the number of partic-
ipants in the communication. If it is known that it will remain a one-to-one relation, we can use
linear channels; otherwise, shared channels are necessary.

In FreeST, the one-to-one version can be expressed using the following linear session types:

type ClientService = ↑{IsOdd: !Int;?Bool,

Succ: !Int;?Int}

Chapter 3. The FreeST programming language 26

type ServerService = dual ClientService

To illustrate this, we can use the visual representation method proposed by Barros [16]:

Figure 3.1: Linear channels - One-to-one representation

The many-to-one version, on the other hand, requires the following unrestricted session type:

type Server = *?ServerService

This can be visually represented as follows:

Figure 3.2: Shared channels - Many-to-one representation

It may be tempting to assume that shared channels are always superior to linear channels
since they eliminate relation restrictions on communication, but this is not necessarily the case.
Although shared channels can combine both types through session initiation to distribute linear
endpoints to other processes, they restrict expressiveness by offering the same interface indefi-
nitely, Furthermore, being “first come, first served”, can be a “double-edged sword”, eliminating
overhead but introducing unpredictability in the communication order. Thus, choosing between
linear and shared channels depends on a specific scenario and requirements.

Essential FreeST features

As a concurrent programming language, FreeST provides the fork primitive to launch new
lightweight threads. Additionally, it includes the forkWith abstraction, which simultaneously
creates a new channel and launches a new asynchronous computation holding one of the end-
points.

To interact with channels, FreeST provides the operations described in the Table 3.2. Al-
ternatively to the match operation, FreeST supports pattern matching akin to other functional
programming languages.

Moreover, FreeST includes the dualof primitive to write the dual type of a session type.

Chapter 3. The FreeST programming language 27

Operation Description

new T Creates a channel of a given type T .

send e c
Sends the value of an expression e through a channel
endpoint c.

receive c Receives a value from a channel endpoint c.

select l c
Internal choice. Selects a branch l in a c channel
endpoint’s protocol.

match cwith {li ↔ ei}
External choice. Uses the channel endpoint c to
serve the branch li selected by the opposite endpoint.

close c Closes a channel c.

wait c Waits for a channel c to be closed.

Table 3.2: Operations to interact with channels in FreeST

Function application operators

Similarly to other functional programming languages, FreeST provides the $ and ε operators
to facilitate function composition. Their primary purpose is to reduce the need for parentheses,
improving readability and making nested function calls cleaner. The $ operator allows expressions
like f $ g $ h x instead of f (g (h x)), creating clean pipelines of function applications.

Conversely, the ε operator enables forward function application, allowing expressions such
as x ε h ε g ε f. This alignment with natural left-to-right reading makes the data flow through
functions more readable, resembling a pipeline of transformations. In FreeST, this is particularly
useful in situations like close (send y (send x c)), which can be rewritten as c ε send

x εsend y εclose.

3.2 The math client example

To gain a clear understanding of FreeST’s session types, we will explore the math client example
[25] to see how they work in practice.

The math client is a well-known example of a client communicating with a server offering two
choices: Plus to add two numbers and Eq to verify that two numbers are equal. Both options
require the client to close and finish the communication.

In FreeST, we can write the following protocol to establish the starting point for this example:

type MathClient = ↑{Plus: !Int;!Int;?Int,

Eq: !Int;!Int;?Bool} ; Close

This protocol defines the entire communication logic of the program. If a client chooses the
Plus option, it must send two integers and receive another in return. Conversely, if the client
chooses the Eq option, it must send two integers and receive a boolean in return. The server side

Chapter 3. The FreeST programming language 28

of the communication holds the dual endpoint and is responsible for responding to the client’s
choice.

A possible implementation for this protocol is as follows:

1 mathServer : dualof MathClient ↔ ()

2 mathServer (Plus c) = let (x, c) = receive c in

3 let (y, c) = receive c in

4 c ε send (x + y) ε wait

5 mathServer (Eq c) = let (x, c) = receive c in

6 let (y, c) = receive c in

7 c ε send (x == y) ε wait

8
9 mathClient : Int ↔ Int ↔ MathClient ↔ Int

10 mathClient x y c = let (n, c) = c ε send x ε send y

11 ε receive in

12 close c; n

13
14 main : Int

15 main = let c = forkWith mathServer in

16 mathClient 2 4 c

This implementation contains two essential components: the mathClient and mathServer

functions, encapsulating each side’s communication behaviour and logic.
The main function serves as the entry point responsible for executing these components.

First, it launches a new concurrent computation using the forkWith abstraction, applying a
dual MathClient endpoint to the mathServer function and executing it concurrently. With
the mathServer executing concurrently and ready to respond to the client’s operations, the
mathClient is executed sequentially in the main thread to prevent the program from terminating
precociously.

The mathClient implements a possible client by choosing the Plus option. Accordingly,
the mathServer implements both options and is prepared to serve them. By selecting the Plus
option, the client sends two integers, which the server receives. Then, the server adds the integers
and sends the result back to the client responsible for receiving it. Finally, the communication is
closed.

Examining the code closely, we observe the dual relationship inherent in these communica-
tions. When the client sends data to the channel through the send primitive, the server must
respond accordingly by receiving the data with the receive primitive, and vice versa. To con-
clude the communication, the client follows the protocol and calls the close primitive, while the
server, being dual to the client, responds with the wait primitive.

3.3 Challenges

FreeST was born as a means to materialize the idea of implementing context-free session types
in a programming language, emphasizing its intricate and powerful type checker and innovative
core features rather than usability and real-world applications. As an academic-oriented language,
FreeST remains in an embryonic state, presenting obstacles that demand a deep understanding of

Chapter 3. The FreeST programming language 29

session types and linearity, resulting in a steep learning curve.
While FreeST supports asynchronous communication through message-passing, it reaches a

wall when addressing well-known parallel and concurrent programming paradigms and their ap-
plications.

As discussed in Chapter 2, concepts such as data parallelism, embarrassingly parallel prob-
lems, futures, divide-and-conquer, and streams are essential in parallel and concurrent program-
ming, encompassing a wide range of applications. These concepts pose several challenges that
hinder FreeST’s practical usage and undermine its parallel and concurrent capabilities.

Data parallelism Implementing embarrassingly parallel problems in FreeST reveals several dif-
ficulties, such as establishing and maintaining a one-to-many communication framework with lin-
ear channels to distribute and retrieve data from asynchronously executing processes. Additionally,
various patterns to parallelize these problems often lead to repetitive and complex boilerplate code
and difficulties with linearity, which could be abstracted.

Futures In FreeST, the return value of an asynchronous computation is always discarded, re-
quiring developers to manually establish and manage channels to retrieve results. Implementing
futures could abstract these complexities, allowing accessible management of asynchronous com-
putations and facilitating the approach to problems that benefit from the previously unintuitive
divide-and-conquer paradigm.

Streams Although FreeST is well-suited for stream programming due to the nature of session
types, it lacks a toolset that abstracts and simplifies this programming paradigm to support more
structured and well-defined programming practices. This limitation results in convoluted and
repetitive code, particularly in more complex scenarios.

This thesis addresses these challenges. The following chapter will further demonstrate how
these challenges manifest and provide an in-depth introduction and explanation of our proposals
to solve them in a realistic, pertinent, and accessible manner.

Chapter 3. The FreeST programming language 30

Chapter 4

Parallel and concurrent modules for
FreeST

This chapter introduces three modules specifically designed to address the challenges of parallel
and concurrent programming discussed in previous chapters. Each module targets specific issues,
providing practical solutions to enhance and facilitate the parallel and concurrent programming
experience in FreeST.

Throughout this chapter, examples accompany each section to demonstrate the identified chal-
lenges and showcase how these tools effectively resolve them. By the end of this chapter, we will
have a comprehensive understanding of the proposed modules and their contributions to enhancing
parallel and concurrent programming practices in the FreeST programming language.

4.1 The Parallel module

As discussed in Section 2.2, embarrassingly parallel problems are known as trivial examples of
problems that benefit from parallelism, being very easy to parallelize.

This section explores how addressing data parallelism and implementing these problems in the
FreeST programming language is still no trivial task. We introduce a module designed to address
these challenges, simplifying the programming experience and providing a concise and efficient
programming environment.

4.1.1 Implementing Monte Carlo in FreeST

To illustrate how FreeST handles embarrassingly parallel problems, let us examine the implemen-
tation of Monte Carlo in Fig. 4.1. Assume the existence of the calculateDartsInCircle

and calculatePi functions. This implementation closely follows the structure and interprocess
communication depicted in Fig. 2.1, comprising four main components:

• The ParallelStream protocol: Defines the communication between a centralizing com-
ponent and the concurrent processes. It describes that one side sends an integer (number of
darts), receives another integer (number of darts in the circle), and waits for the other side
to terminate the communication.

31

Chapter 4. Parallel and concurrent modules for FreeST 32

1 type ParallelStream = !Int;?Int;Wait

2
3 process : dualof ParallelStream ↔ ()

4 process c = let (points, c) = receive c in

5 let localCount = calculateDartsInCircle points in

6 c ε send localCount ε close

7
8 estimatePi : Int ↔ ParallelStream ↔ ParallelStream

9 1↔ ParallelStream 1↔ Int

10 estimatePi nPoints w1 w2 w3 =

11 let pointsPerProc = nPoints / 3 in

12
13 let w1 = send pointsPerProc w1 in

14 let w2 = send pointsPerProc w2 in

15 let w3 = send pointsPerProc w3 in

16 let (y1, w1) = receive w1 in

17 let (y2, w2) = receive w2 in

18 let (y3, w3) = receive w3 in

19 wait w1; wait w2; wait w3;

20
21 let totalCount = y1 + y2 + y3 in

22 calculatePi nPoints totalCount

23
24 main : Int

25 main = let w1 = forkWith process in

26 let w2 = forkWith process in

27 let w3 = forkWith process in

28 manager 999 w1 w2 w3

Figure 4.1: Parallel - Implementation of the Monte Carlo in FreeST

• The main function: The program’s entry point, responsible for launching three concurrent
processes to compute the number of darts in the circle concurrently. It also sequentially
executes the estimatePi function, preventing the program from terminating prematurely.

• The estimatePi function: Acts as the central component managing communications with
the three concurrent processes. It follows the defined protocol by broadcasting the number
of darts each process will toss (999/3), receiving the number of darts in the circle from each
process, and estimating ω.

• The process function: Represents the computation performed by the concurrent processes.
It follows the protocol dual to ParallelStream by receiving a number of darts from
estimatePi, calculating the number of darts in the circle through the
calculateDartsInCircle function, and sending the result back.

This implementation presents several noteworthy issues. Primarily, the code exhibits repetition
and lacks scalability, confining itself to a predetermined number of processes. As the need for
increased parallelism arises, expanding the workforce becomes cumbersome due to the absence
of generalized communication endpoint management. Additionally, a one-to-many relation is

Chapter 4. Parallel and concurrent modules for FreeST 33

inherent here, representing a recurring pattern in addressing data parallelism and implementing
embarrassingly parallel problems in FreeST.

Furthermore, utilizing FreeST often demands a deep understanding of linearity, introducing
a significant time-consuming layer that diverts attention from problem-solving efforts. The same
goes for implementing embarrassingly parallel problems, exacerbating the scalability concerns.

In response to these challenges, the forthcoming module aims to rectify these shortcomings,
providing a conducive environment for streamlined development.

4.1.2 Identifying parallel patterns

To abstract the complexities inherent in addressing data parallelism, our initial step involves iden-
tifying recurring patterns typical to this paradigm.

During the process of testing FreeST’s capabilities and limitations in handling such problems,
we discerned two primary patterns for data distribution:

• Broadcasting the same data across concurrent processes.

• Evenly distributing the contents of a list among concurrent processes.

Conversely, we also identified two primary methods for gathering data from concurrent pro-
cesses:

• Receiving and appending (sub)lists, resulting in a final list.

• Receiving and applying a combining function to basic values, resulting in a final value of
the same type. This process is known as reduction.

Furthermore, we observed that realizing this conceptualization requires a centralizing entity to
coordinate the identified behaviours, underlining the inherent one-to-many relationship. In other
words, due to the nature of session types, a distinct component is necessary to distribute and
gather data while following a protocol to which other processes will respond. This can be seen in
the previous implementation, where the manager acts as the centralizing entity managing commu-
nications, while the concurrent processes simply respond to the defined protocol and calculate the
number of darts inside the circle.

Section 2.4.1 demonstrates how these pattern descriptions align seamlessly with essential MPI
operations for collective communication, crucial for data parallelism:

• Operations for primary data distribution types are represented by broadcast and scatter,
depicted in Figs. 2.4 and 2.5, respectively.

• Operations for gathering data are illustrated by gather and reduce in Figs. 2.6 and 2.7,
respectively.

Additionally, MPI’s collective communication reveals other, albeit less essential, operations
beneficial for developers tackling embarrassingly parallel problems and some specific scenarios.
These include barrier, allgather (a gather followed by a broadcast), and allreduce (a reduce fol-
lowed by a broadcast), illustrated in Figs. 2.3 and 2.8, respectively.

Chapter 4. Parallel and concurrent modules for FreeST 34

4.1.3 Design and implementation

In MPI, processes distinguish their behaviour based on a rank (identifier). For example, the root
process, which also participates in the parallel execution, holds the rank 0. Each process calls
an MPI operation abstraction and informs it of its rank. This allows every process to execute
the same function while enabling specific processes to execute unique code by wrapping it in a
if (rank == x) statement, where x is a particular process rank.

In our module, the entity referred to as the root selects operations, distributes, and gathers
data, whereas other processes respond to operation calls and contribute to solving the problem.
This means the root and the remaining processes have distinct behaviours that must be defined in
separate functions. This distinction is necessary due to the restrictions imposed by linear session
types, as linearity only allows a linear resource to be held by one party at a time. Consequently,
in a communication with two parties, each must hold one of the (linear) endpoints of a channel.
Thus, our approach avoids using identifiers and ensures all processes execute the same code. For
consistency, the root is not integrated into the problem-solving but solely manages and oversees
communications.

Terminology We depart from the traditional root-processes terminology used in the original
MPI specification. Instead of a root process that participates in the computation, our approach
designates the root as a manager. This manager functions as the single central originating or re-
ceiving point in the communication. Consequently, we adopt the terminology manager-workers
to describe their relationship, translating the one-to-many relation to manager-workers.

The initial step in implementing this module involves establishing the communication frame-
work, which includes defining the protocol describing all possible communications between a
manager and workers.

We first considered whether to use linear or unrestricted session types. We chose linear session
types because, while shared channels are more suitable for one-to-many communications, they
lack control over data distribution, operating on a “first come, first served” basis and leading to
unpredictability. Although linear channels may incur more overhead than shared channels, they
offer the necessary expressiveness and control for our purposes.

Having decided on using linear session types and linear channels, we defined the session types
to outline the required communication patterns in this module:

type ManagerStream = ↑{ Broadcast: ![Int]

, Scatter : ![Int]

, Gather : ?[Int]

, Reduce : ?Int

, Done : Wait} ; ManagerStream

type WorkerStream = dualof ManagerStream

The ManagerStream session type follows a recursive protocol, allowing developers to se-

Chapter 4. Parallel and concurrent modules for FreeST 35

lect collective operations as needed until Done is selected, terminating the communication. The
manager, holding endpoints of this type, is responsible for selecting an operation (branch).

Conversely, the WorkerStream session type serves the collective operations. Each worker
maintains an endpoint of this type and is responsible for answering the operation selected by the
manager accordingly.

The protocol does not explicitly cover the barrier, allgather and allreduce operations
since they are combinations of two other operations already covered by the protocol.

Currently, the protocol restricts communications to integers and lists of integers because
FreeST does not yet support polymorphic session types. Additionally, the broadcast opera-
tion is limited to exchanging lists of integers only to provide a more generalized solution, enabling
the broadcasting of both single values (wrapped in a list) and lists (e.g., allgather). In the fu-
ture, it will be possible to broadcast shared channel endpoints, which is just one example of the
interesting use cases that could arise.

To achieve scalability, we must define an algebraic data type (ADT) for the list of endpoints
maintaining a communication channel between the manager and each worker rather than managing
them independently:

data Comm = WNil () | Worker ManagerStream Comm

This data type can be considered analogous to MPI communicators, specifying a communi-
cation context. Only communicators can be used in communication operations. The manager

holds an instance of Comm, enabling communication with each worker, who holds the respective
WorkerStream endpoint to respond accordingly.

Having these pieces established, we need an abstraction to facilitate initialization. In other
words, we need an abstraction which creates and concurrently launches the group of a given
number of workers and executes the manager, establishing and executing the manager-workers
communication framework:

initialize : (Comm ↔ a) ↔ (WorkerStream ↔ ()) ↔ Int ↔ a

The initialize abstraction takes three arguments: a function encapsulating the manager’s
behaviour, a function encapsulating the workers’ behaviour, and an integer specifying the number
of workers to create. It sets the communication channels between the manager and the workers,
constructs a Comm instance with the respective ManagerStream endpoints, and assigns it to the
manager. Each worker is given its corresponding WorkerStream endpoint. Thus, the manager
can communicate with each worker through the Comm instance, which provides access to the com-
munication channels with each worker. The Fig. 4.2 visually represents the resulting framework.

The manager oversees communication with all workers while each worker manages its own
endpoint. Consequently, the manager’s and workers’ functions will have different signatures be-
cause they maintain and manage distinct states: the manager holds an Comm instance and workers
hold a WorkerStream endpoint.

Finally, to call the operations and parallelize a problem, we provide the following abstractions:

Chapter 4. Parallel and concurrent modules for FreeST 36

Figure 4.2: Parallel - The manager-workers communication framework

mbarrier : Comm ↔ Comm

wbarrier : WorkerStream ↔ WorkerStream

mbroadcast : [Int] ↔ Comm ↔ Comm

wbroadcast : WorkerStream ↔ ([Int], WorkerStream)

mscatter : [Int] ↔ Comm ↔ Comm

wscatter : WorkerStream ↔ ([Int], WorkerStream)

mgather : Comm ↔ ([Int], Comm)

wgather : [Int] ↔ WorkerStream ↔ WorkerStream

mreduce : (Int ↔ Int ↔ Int) ↔ Int ↔ Comm ↔ (Int, Comm)

wreduce : Int ↔ WorkerStream ↔ WorkerStream

mallgather : Comm ↔ ([Int], Comm)

wallgather : [Int] ↔ WorkerStream ↔ ([Int], WorkerStream)

mallreduce : (Int ↔ Int ↔ Int) ↔ Int ↔ Comm ↔ (Int, Comm)

wallreduce : Int ↔ WorkerStream ↔ ([Int], WorkerStream)

mdone : Comm ↔ ()

wdone : WorkerStream ↔ ()

Note that there are two abstractions for each operation. Managers should call abstractions with
the m prefix, while workers should call abstractions with the w prefix. Abstractions with the m
prefix take the manager’s Comm instance, whereas those with the w prefix take the WorkerStream
endpoint held by each worker.

Thus, the manager and workers hold complementary roles and exhibit distinct behaviours.
This is reflected in this separation of an operation into two abstractions. For example, consider the
scatter operation, which distributes a list across multiple workers. To perform this operation, the
manager must call mscatter, distributing the list by sending a chunk to each worker through the

Chapter 4. Parallel and concurrent modules for FreeST 37

ManagerStream endpoints in the Comm instance. Correspondingly, each worker calls wscatter
to receive its chunk from the manager through the WorkerStream endpoint:

1 worker : WorkerStream ↔ ()

2 worker c = let (xs, c) = wscatter in

3 wdone c

4
5 manager : [Int] ↔ Comm ↔ ()

6 manager xs comm = comm ε mscatter xs ε mdone

Both sides must call their respective abstraction to close the communication: mdone for man-
agers and wdone for workers.

The complete implementation code for this module can be found in Appendix A.1.

Comparison with MPI operations

It is important to highlight some unique differences between the operations in our implementation
and those described in the MPI specification:

• The scatter operation: Unlike the MPI_Scatter function in MPI (see Fig. 2.5), which
requires developers to manually specify the size of each chunk, our mscatter abstraction
simplifies this process by automatically dividing the list into evenly sized chunks as best as
possible. For example, distributing [1, 2, 3, 4, 5, 6, 7], where the length is not a multiple of
three, across three workers will result in chunks [1, 2, 3], [4, 5], and [6, 7].

• The reduce operation: The MPI_Reduce function in MPI (see Fig. 2.7) takes an array of
elements from each process and sends its reduced result to the root process. Conversely, our
mreduce abstraction expects the manager to receive a single integer from each worker and
apply a combining function to them:

Figure 4.3: Parallel - Illustration of our implementation of the reduce operation

Chapter 4. Parallel and concurrent modules for FreeST 38

Parallelized higher-order functions

Our module also implements a parallelized version of higher-order functions on lists, which opti-
mize heavier transformations:

nmap : Int ↔ (Int ↔ Int) ↔ [Int] ↔ [Int]

nfoldl : Int ↔ (Int ↔ Int ↔ Int) ↔ Int ↔ [Int] ↔ Int

nfoldr : Int ↔ (Int ↔ Int ↔ Int) ↔ Int ↔ [Int] ↔ Int

nfilter : Int ↔ (Int ↔ Bool) ↔ [Int] ↔ [Int]

nzipWith : Int ↔ (Int ↔ Int ↔ Int) ↔ [Int] ↔ [Int] ↔ [Int]

nzipWith3 : Int ↔ (Int ↔ Int ↔ Int ↔ Int) ↔ [Int] ↔ [Int]

↔ [Int] ↔ [Int]

A notable aspect of these functions is that we implement them using our own module. For
example, here is the implementation of the nfoldl function:

1 foldlWorker : (Int ↔ Int ↔ Int) ↔ Int ↔ WorkerStream ↔ ()

2 foldlWorker f z c = let (xs, c) = wscatter c in

3 c ε wreduce (foldl f z xs) ε wdone

4
5 foldlManager : (Int ↔ Int ↔ Int) ↔ Int ↔ [Int] ↔ Comm ↔ Int

6 foldlManager f z xs comm = let (x, comm) = comm ε mscatter xs

7 ε mreduce f z in

8 mdone comm; x

9
10 nfoldl : Int ↔ (Int ↔ Int ↔ Int) ↔ Int ↔ [Int] ↔ Int

11 nfoldl n f z xs = initialize (foldlManager f z xs)

12 (foldlWorker f z) n

The only difference from the traditional higher-order functions is the inclusion of an additional
parameter to specify the number of workers for parallel execution.

For instance, to sum the elements of an arbitrary list xs in parallel, we can use the following
code:

main : [Int]

main = nfoldl 3 (+) 0 xs

4.1.4 Implementing Monte Carlo with the module

In Fig. 4.1, we implemented a parallel version of Monte Carlo using pure FreeST’s capabilities;
in contrast, Fig. 4.4 showcases a re-implementation of the same problem utilizing the described
module, highlighting the differences.

Let us analyze the three components present in the code:

• The main function: Once again, this serves as the program’s entry point and calls the
initialize function, passing the manager and worker functions as arguments. It forks
three workers and creates three channels, assigns a WorkerStream endpoint to each, and

Chapter 4. Parallel and concurrent modules for FreeST 39

1 worker : WorkerStream ↔ ()

2 worker c = let (points, c) = wbroadcast c in

3 let localCount = calculateDartsInCircle (head points) in

4 c ε wreduce localCount ε wdone

5
6 manager : Int ↔ Comm ↔ Int

7 manager nPoints comm = let pointsPerProc = nPoints / 3 in

8 let comm = mbroadcast [pointsPerProc] comm

9 let (comm, totalCount) = mreduce (+) 0 comm in

10 mdone comm; calculatePi nPoints totalCount

11
12 main : Int

13 main = initialize (manager 999) worker 3

Figure 4.4: Parallel - Implementation of the Monte Carlo using the Parallel module

constructs a Comm instance. Subsequently, it executes the manager function sequentially,
providing it with the Comm instance.

• The manager function: Manages communication with the workers, distributing and gather-
ing resources. It uses the Comm instance to select the operation to execute. In this case, the
manager uses the mbroadcast abstraction to broadcast the number of darts (999/3) each
worker will toss. Then, it calls the mreduce abstraction to receive the number of darts in the
circle from each process and applies the (+) combining function to sum the values. Finally,
it closes its side of the communication with each worker through the wdone abstraction
estimates ω.

• The worker function: Encapsulates the workers’ behaviour, responding to the manager’s
calls and solving the problem in parallel. First, it calls the wbroadcast abstraction to
receive the number of darts to toss. Then, it calculates the number of darts in the circle
using the calculateDartsInCircle function and sends the result back to the manager
through the wreduce abstraction. Finally, in accordance with the manager, it closes its side
of the communication with the wdone abstraction.

In comparison, our module allows a more focused and condensed implementation with better-
defined blocks of code. Additionally, there is no need to define a protocol, as the module predefines
a protocol describing all possible communications.

While it imposes some usage rules on developers, this example demonstrates that our mod-
ule reduces implementation effort and avoids difficulties with linearity and scalability, resulting
in fewer lines of code. It provides an environment that enables developers to focus on solving
problems in a structured and organized manner.

4.1.5 Interprocess communication: Challenges and attempts

We have discussed some limitations of the current implementation, particularly its lack of support
for exchanging and manipulating values other than integers or lists of integers. Moving forward,

Chapter 4. Parallel and concurrent modules for FreeST 40

we can explore some ideas that arose during development.
As previously explained, MPI assigns identifiers (ranks) to concurrent processes, allowing

them to differentiate their behaviour based on rank. This enables a combination of interprocess
communication through point-to-point and collective communication, where processes in the same
group can communicate with each other based on their rank while performing collective opera-
tions. Our module, however, does not support this feature, as workers only maintain endpoints to
communicate with the manager, inhibiting direct interprocess communication.

Combining both communication types is crucial for addressing a broader range of problems,
such as odd-even sorting [38] and finite differences [46] in parallel, which require data exchange
between processes. Currently, our module cannot implement these types of problems. However,
given that our work is already based on the MPI specification, we attempted to expand our mod-
ule’s capabilities to include interprocess communication.

In this attempt, we create a shared channel for each process, assigning a shared endpoint
(↓?T) for receiving data and an identifier during initialization. We then use a dictionary-like ADT
to map ranks to their respective dual shared endpoint (↓!T), enabling communication with any
process based on its rank. Similar to MPI, we offered point-to-point communication abstrac-
tions and built collective communication abstractions on top of these. Additionally, each process
could execute the same function and distinguish unique behaviour based on rank, eliminating the
manager-workers dichotomy.

Unfortunately, this approach proved to be unviable. The module’s framework and its pro-
vided abstractions became overly convoluted and complex, resulting in a confusing and unintu-
itive experience for developers. Furthermore, it was unsafe, as processes could easily cheat, and
some synchronization problems appeared, leading to unexpected results. These issues contradicted
FreeST’s philosophy of keeping communication simple, intuitive, and secure. The complex and
time-consuming development ultimately led us to abandon the idea.

4.2 The Futures module

The concept of futures introduces a new paradigm for writing and launching asynchronous com-
putations in FreeST. A future typically represents the result of a computation performed asyn-
chronously, offering a different approach than the current methods used in FreeST.

In FreeST, data exchange between parties, including asynchronous computations, revolves
around session types and channels. Traditionally, asynchronous computations launched through
the fork primitive have their return values discarded. If a developer wishes to retrieve the result
of an asynchronous computation, they must create a channel between the main thread and the
asynchronous computation to exchange that data.

Integrating an abstraction for futures into the FreeST programming language addresses this
limitation by eliminating the need for explicit channel creation between the main thread and asyn-
chronous computations, resulting in simpler and more intuitive code. Consequently, developers
can launch and manage asynchronous operations more efficiently, promoting a new and more

Chapter 4. Parallel and concurrent modules for FreeST 41

efficient way of handling asynchronous computations in FreeST.

FreeST, being a purely functional language, emphasizes immutability and pure functions. In
this paradigm, the notion of promises, which are writable entities that change state over time, is
not well-suited. Instead, FreeST favours constructs that align with its functional nature, where
values and computations are predictable and side-effect-free. Thus, we can directly use constructs
that handle futures.

4.2.1 Design and implementation

To implement futures in FreeST, we benefit from channels which are somewhat analogous to a
promise, as they can store a value that will be computed later. Accordingly, the ?a;Wait pro-
tocol represents this component, serving as the representation of a future. In the near future,
we anticipate implementing the following session type, as FreeST currently does not yet support
polymorphic session types:

type Future a = ?a;Wait

To launch a new asynchronous computation and create and return a future, we provide the
following abstraction:

future : (() ↔ a) ↔ ?a;Wait

It takes a thunk—a deferred computation or, more specifically, an expression that has not yet
been evaluated—and returns a future. It works by creating a new channel and passing
!a;Close, which is dual to the protocol representing a future, to the forked computation. The
new asynchronous computation involves forcing the evaluation of the thunk and then sending its
return value to the channel.

The future abstraction returns a future from which the result of the asynchronous computa-
tion can be retrieved. To achieve this, we provide the following abstraction:

block : ?a;Wait ↔ a

It receives a future and returns the value it is holding. If the value is not yet available, the
current thread will block until it becomes available.

Additionally, we provide a more situational abstraction that delays the execution of a compu-
tation until another computation has been completed:

delay : (() ↔ a) ↔ (() ↔ b) ↔ ?b;Wait

This abstraction takes two thunks and asynchronously chains them, ensuring the first is eval-
uated before the second. The result of the first computation is discarded, and a future holding the
result of the delayed computation is returned.

The implementation details of each abstraction in this module can be found in Appendix A.2.

Chapter 4. Parallel and concurrent modules for FreeST 42

4.2.2 Addressing divide-and-conquer

Parallelizing the divide-and-conquer programming paradigm in FreeST is not straightforward by
default. In divide-and-conquer algorithms, a thread must retrieve and merge the results of the
following two forked sub-problems. In FreeST, this translates into maintaining a channel for each
asynchronous recursive call to retrieve data when results are available. The resulting relationship
between processes can be visually represented as follows:

Figure 4.5: Futures - Divide-and-conquer process relationship in FreeST

Thus, implementing divide-and-conquer algorithms is not very intuitive and can become quite
complex.

To address this issue, we can use futures to implement divide-and-conquer algorithms. Futures
abstract the required channel management, making retrieving an asynchronous process’s return
value easier. We can divide the problem into two sub-problems, compute them asynchronously
using the future abstraction, and retrieve the results with the block abstraction, combining them
to give a solution to the original problem.

4.2.3 Implementing the Fibonacci sequence

As discussed in Sections 2.2.3 and 2.4.2, the Fibonacci sequence computation is a classic example
of a recursive algorithm that benefits from divide-and-conquer strategies.

This subsection explores how to leverage futures in FreeST to implement a parallel divide-
and-conquer version of the Fibonacci. Consider the following implementation:

Chapter 4. Parallel and concurrent modules for FreeST 43

1 pFib : Int ↔ Int ↔ Int

2 pFib n | n == 0 = 0

3 | n == 1 = 1

4 | otherwise = let f1 = future (_:() ↔ pFib (n - 1)) in

5 let f2 = future (_:() ↔ pFib (n - 2)) in

6 block f1 + block f2

To understand how the divide-and-conquer paradigm applies to a concurrent implemention of
the Fibonacci sequence using futures, let us break down the pFib function:

• Divide: In the recursive case, the problem is divided into two sub-problems by creating two
futures that concurrently execute the same function. One future computes pFib (n - 1)

while the other computes pFib (n - 2), representing the computations of Fibonacci’s
proceeding numbers. This pattern continues recursively until a base case is reached, where
n is either 0 or 1.

• Conquer: In each recursive call, the computation of pFib (n - 1) and pFib (n - 2)

is carried out in parallel, with the block abstraction waiting for the results of these futures.

• Combine: The results are then combined by summing the values returned by these futures.
This approach ensures efficient computations by leveraging concurrent execution, starting
from the base cases and moving up to the initial problem.

This example demonstrates the power of futures in facilitating concurrent computation and
how they can be seamlessly integrated into divide-and-conquer algorithms to enhance performance
in FreeST.

4.2.4 Comparison to ForkJoin and challenges

ForkJoin is a concurrent divide-and-conquer approach centred on the mechanisms of forking and
joining. Our module implements abstractions that function as analogous mechanisms: we use
the future abstraction similarly to the fork abstraction, and the block abstraction akin to the
join abstraction. This enables the implementation of divide-and-conquer algorithms in a simi-
lar manner. However, ForkJoin follows specific scheduling mechanisms and thread management
techniques, which reveal fundamental differences compared to our module’s approach to divide-
and-conquer.

In Section 2.4.2, we discussed the ForkJoin framework’s work-stealing scheduler, wherein a
thread with an empty scheduler queue attempts to take a task (lightweight thread) from another
thread. In contrast, FreeST does not implement its own scheduler; instead, it relies on Haskell’s
work-pushing scheduler [42]. Work-pushing is a technique in which, when a thread’s queue has
more than one task and there are idle threads, it distributes some tasks to other idle threads. This
difference is minor since both techniques behave very similarly, and it does not negatively affect
our goal. On the contrary, FreeST enables a similar concurrent divide-and-conquer approach to
ForkJoin.

Chapter 4. Parallel and concurrent modules for FreeST 44

Task granularity

Regarding task granularity control, FreeST currently lacks the necessary functionalities to imple-
ment most mechanisms. The only two viable options are a “limitation number”, adjusted to the
specific problem, and the MaxLevel mechanism, which developers can easily implement through
an additional parameter in the function. However, the remaining mechanisms mentioned in Sec-
tion 2.4.2 are either overly complicated and unintuitive to implement (e.g., MaxTasks, which is
implementable through a shared channel) or simply unattainable due to the absence of primitives
enabling developers to retrieve real-time information about the scheduler’s status, such as the
number of active threads, their queues, or the total number of tasks created.

To address this limitation in future work, we have identified an opportunity stemming from the
lack of control over the scheduler. Our proposal involves integrating bindings to specific Concur-
rent Haskell primitives, thereby enhancing FreeST’s capabilities and enabling the implementation
of more task granularity control mechanisms. We have initiated this enhancement by creating a
FreeST Enhancement Proposal (FEP) in the project’s repository, which can be found in Appendix
B.

4.3 The Streams module

FreeST employs channels as the fundamental mechanism for data exchange among agents. These
channels are typically used for the sequential and continuous exchange of data elements, allowing
them to be read from or written to in a stream-like fashion. Consequently, stream programming
emerges as a fundamental and often implicit programming paradigm within FreeST.

To formalize this concept, we can define a recursive protocol that describes the transmission
of elements of a specified type until one of the participating agents decides to terminate the trans-
mission:

type IntStream = ↑{More: !Int;IntStream, Done: Wait}

This protocol represents a stream of integers. Agents holding an endpoint of type IntStream
can either select the More operation to continue feeding integers to the stream or the Done opera-
tion to conclude the transmission.

Moreover, FreeST’s concurrent nature empowers agents to process data asynchronously,
thereby enhancing the efficiency and responsiveness of data processing tasks. For instance, con-
sider a scenario where one entity generates integers into a stream while another retrieves and prints
these integers. We can implement this scenario as follows:

1 main : ()

2 main = let (w, r) = new @IntStream () in

3 fork (_:() ↔ intSource w);

4 intPrinter r

The new primitive creates a stream and returns endpoints w (writer) and r (reader) of types
IntStream and dualof IntStream, respectively. Here, intSource concurrently feeds inte-

Chapter 4. Parallel and concurrent modules for FreeST 45

gers into the stream using the w endpoint, while intPrinter sequentially retrieves and prints
integers at the same time using the r endpoint.

Therefore, developing a dedicated streams module in FreeST to define and abstract program-
ming patterns for managing data streams among distinct agents could significantly enhance the
stream programming experience. By establishing standardized streaming practices tailored to the
language’s characteristics, such a module would streamline programming workflows, inspire in-
novative problem-solving approaches, and alleviate issues associated with repetitive and complex
code.

4.3.1 Design and implementation

The first step in developing a standardized streams module involves establishing the protocol for
stream programming:

type OStream = ↑{More: !Int;OStream, Done: Wait}

type IStream = dualof OStream

This protocol introduces a naming convention to differentiate behaviours related to streams:
O (Output) for sending integers into a stream and I (Input) for retrieving integers from a stream.
Although this mirrors our previous protocol, descriptive naming enhances clarity.

Similar to the Parallel module, our stream protocol currently limits communications to integer
exchanges due to FreeST’s lack of support for polymorphic session types.

Filters In the context of these session types, any function that handles streams and processes
its data through these types can be considered a filter. Essentially, a filter is any function that
maintains an OStream endpoint to send integers into a stream and/or an IStream endpoint to
receive integers from a stream. For instance, in the previous example, both intSource and
intPrinter are filters.

Pipelines Pipelines are formed by linking two or more filters with streams. To link two filters,
one must hold an OStream endpoint and the other an IStream endpoint. The second filter can
then link with a third stream through the same process, and so on. This chaining process con-
tinues, with each subsequent filter linking to the next through a one-to-one relationship between
endpoints. Unfortunately, a universal pipeline abstraction is not feasible due to the impossibil-
ity of defining a consistent signature for all possible filter definitions. Nonetheless, the previous
example successfully demonstrates a pipeline consisting of two filters.

Building upon the OStream and IStream session types, we designed several abstractions and
patterns to create a robust environment for stream programming.

To facilitate basic but essential stream manipulation, we developed the following auxiliary
abstractions:

sendS : Int ↔ OStream ↔ OStream

Chapter 4. Parallel and concurrent modules for FreeST 46

waitS : OStream ↔ ()

forward : IStream ↔ OStream 1↔ OStream

fromList : [Int] ↔ OStream ↔ ()

toList : IStream ↔ [Int]

Each abstraction serves the following purpose:

• sendS and waitS abstract the OStream protocol’s operations. The former sends an integer
into a given stream and returns the continuation of the protocol, while the latter waits for
the stream to be closed.

• forward sends the contents of one stream into another, closing the former and returning
the continuation of the latter.

• fromList and toList complement each other. The former feeds the contents of a list into
a given stream, whereas the latter (re)constructs a list from the contents of a stream.

These abstractions form the foundation of our module, enabling straightforward communica-
tion patterns that can be useful for basic serialization and deserialization tasks.

Splitters and joiner

To leverage FreeST’s potential and enhance the flexibility and expressiveness of our streams mod-
ule, we implemented patterns inspired by constructs from the StreamIt programming language
(discussed in Section 2.4.3). These patterns enable the composition of asynchronous computa-
tions, allowing for more complex stream processing pipelines.

We adapted StreamIt’s SplitJoin construct to the FreeST programming language. Splitters
distribute data between two streams, automating the process of linking a OStream endpoint to
two IStream endpoints without requiring the programmer to manage data distribution manually.
Correspondingly, the joiner merges the contents of two streams and forwards them into another
stream.

We offer three different types of splitter abstractions, each with similar signatures and be-
haviours:

splitSDup : IStream ↔ OStream 1↔ OStream 1↔ ()

splitSAlt : IStream ↔ OStream 1↔ OStream 1↔ ()

splitSWith : (Int ↔ Bool) ↔ IStream ↔ OStream 1↔ OStream 1↔ ()

• splitSDup duplicates elements from a stream and sends them to two different streams.

• splitSAlt alternates elements between two streams, distributing data in a round-robin
fashion.

Chapter 4. Parallel and concurrent modules for FreeST 47

• splitSWith uses a predicate function to determine the distribution of elements. It sends
the elements that satisfy the predicate to the first stream and those that do not to the second
stream.

For the joiner, we provide the following abstraction:

joiner : IStream ↔ IStream 1↔ OStream 1↔ ()

This abstraction functions similarly to the joiner mechanism in the StreamIt programming
language in the sense that it merges and forwards the contents of two streams into another stream
in a round-robin manner. Although splitters and joiners can be used together, they are independent
abstractions and do not necessarily need to be used in conjunction.

Higher-order functions with streams

Finally, this module provides some higher-order filters for data manipulation within streams:

mapS : (Int ↔ Int) ↔ IStream ↔ OStream 1↔ ()

foldlS : (Int ↔ Int ↔ Int) ↔ Int ↔ IStream ↔ Int

foldrS : (Int ↔ Int ↔ Int) ↔ Int ↔ IStream ↔ Int

filterS : (Int ↔ Bool) ↔ IStream ↔ OStream 1↔ ()

• mapS applies a function to each element in a stream and feeds the result into the output of
another stream.

• foldlS and foldrS use a combining function to systematically combine all elements in a
stream, returning the result.

• filterS filters elements in a stream based on a given predicate and feeds the passing
elements into another stream.

Consider the previously discussed scenario with an integer generator and a printer. We can use
filterS to only print the even numbers:

1 main : ()

2 main = let r = forkWith intSource in

3 let r2 = forkWith (filterS even r) in

4 intPrinter r

In this setup, intSource and filterS run concurrently. intSource generates integers,
which filterS then processes to retain only even numbers, which intPrinter prints.

See Appendix A.3 for the detailed implementation of this module’s abstractions and defini-
tions.

Chapter 4. Parallel and concurrent modules for FreeST 48

4.3.2 Implementing the quicksort algorithm

Quicksort [30, 21] is an efficient and well-known sorting algorithm that follows the divide-and-
conquer strategy to sort a list of elements in ascending or descending order.

The quicksort algorithm works as follows:

1. Choose a pivot: Select an element from the list as the pivot. In the simplest implementation,
the first or last element are often chosen as pivot.

2. Partitioning: Reorder the list such that all elements less than the pivot come before it, and
all elements greater than or equal to the pivot come after it. The pivot is now in its final
sorted position.

3. Recursion: Recursively apply quicksort (steps 1 and 2) to the two sublists on either side of
the pivot until reaching the base case (e.g., a sublist contains zero or one element).

4. Merge: As the recursive calls return, concatenate the sorted sublists around the pivot to
form the fully sorted list.

Figure 4.6: Streams - Example of the quicksort algorithm

Implementation

Assume the existence of the forkWith2 abstraction, a version of forkWith that creates two
channels and launches a thread.

To demonstrate the power and usefulness of our contribution, we present an implementation
of quicksort using streams:

Chapter 4. Parallel and concurrent modules for FreeST 49

1 sqsort : IStream ↔ OStream 1↔ ()

2 sqsort (Done i) o = wait i; closeS o

3 sqsort (More i) o = let (x, i) = receive i in

4 let (i1, i2) = forkWith2 (splitSWith (<x) i) in

5 let i3 = forkWith (sqsort i1) in

6 let i4 = forkWith (sqsort i2) in

7 o ε forward i3 ε sendS x

8 ε forward i4 ε closeS

9
10 qsort : [Int] ↔ [Int]

11 qsort xs = let i1 = forkWith (fromList xs) in

12 let i2 = forkWith (sqsort i1) in

13 toList i2

The qsort function comprises the essential building blocks of this implementation. It first
uses fromList to concurrently feed the list of integers into a stream. It then calls sqsort to
sort these numbers concurrently and finally converts the sorted stream integers back to a list using
toList.

sqsort filter is the core component of this implementation. It takes an input stream endpoint
to receive data from an existing stream and an output stream endpoint to feed data into another
stream. Based on the previous definition of the quicksort algorithm, sqsort follows these steps:

1. Choose a pivot: Receives the head number from the input endpoint of the stream and de-
clares it as the pivot.

2. Partitioning: Uses the splitSWith splitter to partition the stream into two new streams
via the forkWith2 abstraction. Numbers less than the pivot go into one stream, while the
rest go into the other.

3. Recursion: Divides the problem into two smaller problems by recursively applying itself
to the input endpoint of the split streams. Each call processes half of the data concurrently,
repeating this process until each stream contains only one element.

4. Merge: Each call to sqsort also takes an output stream endpoint to communicate with the
previous computation. Each computation receives the data from its two subproblems, uses
its output endpoint to send the received data from the first subproblem, sends its selected
pivot, and finally sends the received data of the second subproblem, respectively. This merge
maintains the order, with lower elements on the left and higher ones on the right.

This divide-and-conquer approach creates a tree-like structure, similar to the one illustrated in
Fig. 4.5.

4.3.3 Comparison to the StreamIt programming language

Attentive readers may notice that our approach to stream processing in this work diverges some-
what from the “storytelling” method throughout the document. The recurring discussion of Monte
Carlo and Fibonacci culminated in their implementations using the Parallel and Futures modules,

Chapter 4. Parallel and concurrent modules for FreeST 50

respectively. For streams, we chose to delve into two distinct problems: the moving average,
discussed in the StreamIt section (Section 2.4.3), and the quicksort algorithm in this section.
These examples highlight the contrasting approaches to stream processing between our module
for FreeST and StreamIt.

The moving average is a typical example in StreamIt, leveraging the peek operation to access
stream values without removing them. In contrast, FreeST does not support such channel inter-
action features since accessing a channel value requires strict protocol adherence, consuming the
linear endpoint entirely. Essentially, FreeST lacks the capability to “peek” into channel content
without consuming it. Consequently, this limitation makes implementing a moving average in
FreeST significantly different from StreamIt’s approach and fails to demonstrate the potential of
splitters.

To demonstrate the strengths of our module, we implemented the quicksort algorithm, known
for its concurrency challenges. This algorithm aligns naturally with our module, contrasting with
the complexities StreamIt faces due to quicksort’s divide-and-conquer nature, requiring creative
and intricate use of its constructs.

In conclusion, our module provides a lower-level approach to stream processing, suited to
FreeST’s functional characteristics (e.g., immutability and pure functions), features (e.g., linear-
ity, session types), and overall use cases. Conversely, StreamIt provides high-level constructs op-
timized for parallel stream processing, incorporating imperative elements such as loops and state
management. These differences shape distinct programming environments: our module abstracts
common stream logic within FreeST’s programming practices, while StreamIt is a fully-fledged
language optimized specifically for stream programming. Thus, our module and the StreamIt
programming language are designed to achieve distinct goals and adapt differently to various
problems benefitting from asynchronous stream processing.

Chapter 5

Evaluation

FreeST is not simple. It is an embryonic language lacking a comprehensive suite of tools suitable
for real-world applications. Its unique characteristics demand substantial domain knowledge and
effort to develop parallel and concurrent systems effectively.

To address these challenges and adapt FreeST to the demands of concurrent programming, we
have developed and integrated several modules that address well-known programming paradigms,
abstracting their patterns. These modules are tailored to FreeST’s specific needs, thereby expand-
ing its capabilities and making it more accessible and practical for developers. Our contributions
aim to ease the learning curve for developing parallel and concurrent programs, transforming
FreeST into a more versatile tool.

To evaluate the effectiveness of these contributions, we conducted three surveys—each fo-
cused on one of the developed modules—and a Lines of Code (LoC) comparison between exam-
ples implemented in “pure” FreeST and those using our modules. These surveys were designed
to gather feedback from FreeST programmers regarding their experiences and perceptions of the
modules. The ultimate goal of this evaluation is to validate our contributions by assessing their
relevance, usefulness, and accessibility in the context of parallel and concurrent programming
in FreeST. Moreover, we did not conduct a performance analysis of these modules, as such an
analysis is orthogonal to our primary objective of evaluating usability and practicality.

5.1 Surveys

The target audience for these surveys comprises the FreeST community, which includes students
and professors highly familiar with the FreeST programming language. We chose such a restrictive
target audience to ensure feedback from individuals with significant experience with the language,
allowing for constructive feedback and deeper informed insights into our contributions.

The total number of participants remains uncertain due to an uneven number of responses
across the surveys: five for the Parallel module, five for the Futures module, six for the Streams
module. However, we estimate a total of six participants. This sample size, while limited, still
provides valuable feedback from a knowledgeable and experienced group within the FreeST com-
munity.

51

Chapter 5. Evaluation 52

5.1.1 Design

All our surveys follow a structured format to ensure consistency and comprehensiveness:

1. Introduction: Provides a brief overview of the module’s purpose, the specific subjects it
addresses, and the problems it aims to solve within the context of FreeST.

2. Module design: Describes the module’s design decisions and implementation.

3. Examples: Presents practical examples demonstrating the application of the module to real-
world parallel and concurrent programming problems.

4. Exercise: Tasks participants with implementing a specific exercise using the module. This
hands-on activity evaluates the module’s usability, effectiveness, and ease of integration into
practical programming tasks.

5. Feedback request: Gathers feedback on the module’s relevance, usability, functionality,
and potential areas for improvement.

As emphasized throughout this work, each module links to a specific programming paradigm:
the Parallel module focuses on data parallelism and embarrassingly parallel problems, the Futures
module addresses futures and divide-and-conquer strategies, and the Streams module deals with
stream programming.

After introducing participants to each module’s design, implementation, and goals, we seek to
analyze their reactions and adaptability through exercises that involve solving problems related to
the respective programming paradigm using the corresponding module. Additionally, we incorpo-
rate open-ended questions for participants to articulate any difficulties or challenges encountered
during these exercises. This approach is crucial for evaluating each module’s effectiveness in
achieving its intended goals and addressing the specific programming paradigms linked to them.

Feedback questions

To gather feedback, we request participants to evaluate their experience based on several parame-
ters on a scale from 1 to 10:

1. Accessibility: How easy is the module to use and understand its workflow and programming
environment?
Scale: 1 (Hard) to 10 (Easy)

2. Compatibility: How well does the module align with the features (e.g., concurrency, lin-
earity, and session types) and philosophy (e.g., simplicity and security) of the FreeST pro-
gramming language?
Scale: 1 (Incompatible) to 10 (Compatible)

Chapter 5. Evaluation 53

3. Relevance: How relevant is the integration of this module into the FreeST programming
language?
Scale: 1 (Irrelevant) to 10 (Relevant)

However, the parameters evaluated vary from survey to survey:

• Parallel module: Evaluated according to parameters 1 and 3, as this module creates a
complete working environment that addresses embarrassingly parallel problems with an
implicit workflow.

• Futures module: Evaluated according to parameters 2 and 3 since it comprises simple
abstractions that wrap existing FreeST primitives but does not invoke a specific workflow or
form a distinct programming environment.

• Streams module: Evaluated according to parameters 1, 2 and 3, as it abstracts certain
programming patterns in FreeST and encourages stream programming patterns.

Finally, we included an open-ended question to allow participants to provide constructive feed-
back and offer deeper insights by pointing out additional observations or questions.

See appendices C.1, C.2, and C.3 for the integral version of these surveys.

5.1.2 Results and analysis

We evaluate the effectiveness of our modules through two primary components: an analysis of par-
ticipant performance in implementing each survey’s exercise and an examination of the feedback
gathered in each survey’s concluding section.

Exercises analysis

Parallel module’s exercise All participants completed this exercise successfully, demonstrat-
ing a proficient grasp of the module’s functionalities and programming environment. While some
implementations exhibited minor coding practice issues, these did not hinder the overall comple-
tion of the task. This consensus underscores the module’s effectiveness in enabling participants to
address embarrassingly parallel problems within FreeST.

Futures module’s exercise Similarly, all participants exhibited a proficient understanding of
leveraging FreeST’s futures to implement divide-and-conquer strategies effectively. This outcome
underscores the module’s effectiveness in equipping participants with the necessary tools for ap-
proaching the divide-and-conquer paradigm within FreeST.

Streams module’s exercise The exercise assigned to the Streams module presented more chal-
lenges compared to the others. While most participants understood how to use the module’s fea-
tures to implement the exercise, there were notable irregularities. One participant struggled to
grasp why this scenario benefited from our abstractions and encountered difficulties dealing with

Chapter 5. Evaluation 54

linearity. Another participant overlooked launching asynchronous computations, undermining the
intended advantages of using FreeST. These observations suggest opportunities for enhancing the
module’s effectiveness in achieving its goals and optimizing the survey’s efficacy in explaining
and demonstrating its capabilities.

Feedback analysis

By calculating each question’s average rating, we can better understand whether each module
achieved its goals. Using the evaluation parameter distribution from the previous subsection and
the averages obtained from the ratings, we present the bar chart in Fig. 5.1.

Accessibility Compatibility Relevance
0

2

4

6

8

10
9.2 9.4

8.338.4

9.6

7.17

8.33

Parameters

A
ve

ra
ge

ra
tin

g

Parallel Futures Streams

Figure 5.1: Comparison of survey results across all modules

We acknowledge that individual differences in background and expertise influence partici-
pants’ reactions and adaptability. Despite this variability, the overall results depicted in Fig. 5.1
are very positive. We received overwhelmingly positive feedback overall, with only one major
negative feedback per survey, preventing the results from achieving consistent averages of 9-10.

The Parallel and Futures modules received high ratings, confirming their effectiveness in ad-
dressing embarrassingly parallel problems and implementing divide-and-conquer strategies, re-
spectively. The slightly lower ratings for the Streams module suggest some challenges in under-
standing and applying its features, as noted in the exercise analysis.

The positive feedback and constructive criticism provide valuable insights into how we can
improve the modules and the surveys. The open-ended responses will further illuminate specific
areas for enhancement.

Chapter 5. Evaluation 55

Parallel module’s insights The feedback on the Parallel module was very positive overall, as re-
flected by the high ratings in the evaluation. Participants acknowledged the module’s promise and
effectiveness in facilitating addressing embarrassingly parallel problems and praised its ability to
abstract away boilerplate code, allowing them to focus on domain-specific logic, thus meeting its
primary goals. Some feedback emphasized the need for comprehensive documentation to ease the
learning curve, suggesting that clear explanations of each primitive’s purpose would enhance un-
derstanding. While a few participants felt that session types were not essential and recommended
more intuitive naming conventions for operations, these suggestions aimed at further improving
an already effective module. Additionally, the desire for more higher-level functions indicates a
recognition of the module’s potential for even greater usability. Overall, the positive reception
emphasizes the module’s success in achieving its goals while providing valuable insights for con-
tinuous improvement.

Futures module’s insights The feedback on the Futures module reflects a positive reception
overall, correlating well with the high ratings evaluation. Participants found the module extremely
useful for implementing solutions using the divide-and-conquer paradigm, appreciating its sim-
plicity and compactness. They highlighted the module’s effectiveness in modelling classic con-
current programming primitives through FreeST’s session-typed channels, which aids new users
in grasping session types. Suggestions for improvements, such as enhancing type inference to sim-
plify lambda expressions and introducing syntactic sugar for thunks, primarily address limitations
inherent in FreeST rather than shortcomings specific to the module. These insights underscore the
module’s value in bridging familiar programming paradigms with FreeST’s capabilities, suggest-
ing opportunities for future enhancements to streamline usability and improve user experience.

Streams module’s insights The feedback on the Streams module reflects positive sentiment,
consistent with the ratings in the evaluation. Participants appreciated its ability to simplify boiler-
plate code for concurrent programming while promoting stream programming patterns. However,
some identified challenges for new users in manually creating and managing channel endpoints,
which are essential in FreeST’s design. This aligns with participants’ comments such as “It took
me a while to understand the behaviour of each function and the example provided since it uses a
lot of forks” and “I do not want to create processes manually.”. We argue that this low-level design
decision fits FreeST better and introduces flexibility to accommodate various use cases, asserting
that abstracting channel creation and forking would overly restrict user control. Some participants
identified potential applications in data analysis and AI, such as neural networks and image pro-
cessing. Features like forkWith2 were highlighted for their utility, suggesting potential for future
additions to further leverage the module’s capabilities. Moreover, FreeST’s limitations constrain
the module’s usability, such as the lack of type operators and support for lists with elements other
than integers, which impact its widespread adoption.

Chapter 5. Evaluation 56

The integral answers to the open-ended questions can be found in appendices D.1, D.2, and
D.3.

5.2 Lines of Code comparison

To assess the efficiency of the Parallel module in simplifying the implementation of embarrass-
ingly parallel problems, we compared the Lines of Code (LoC) between implementations using
the pure FreeST and the Parallel module.

We implemented three examples using both approaches:

• Parallel average: Distributes a list across several processes (scatter), sums the sublists in
parallel, then receives and sums the results (reduce), and calculates the average sequentially.

• Scalar product: Distributes two lists across several processes (two scatters), calculates the
scalar product in parallel, then receives and sums the results (reduce) sequentially.

• Monte Carlo: A broadcast followed by a reduce (extensively discussed throughout this doc-
ument; you should be familiar with it by now).

The bar chart below compares the LoC between the two implementations:

ParallelAverage ScalarProduct Monte Carlo
0

10

20

30

40

50

60

50

16

56

20

52

24

Examples

Lo
C

Pure FreeST Parallel module

Figure 5.2: LoC comparison for pure FreeST and Parallel module implementations

These results highlight a significant LoC reduction when using the Parallel module compared
to pure FreeST implementations. The module consistently reduces LoC by approximately 30 lines

Chapter 5. Evaluation 57

per example, demonstrating its ability to abstract boilerplate code and streamline development.
This reduction is an absolute value around 30 lines—varying slightly depending on the operations
performed—rather than a scaling percentage. This abstraction allows developers to focus on the
core logic of each problem, freeing them from the burden of the repetitive task of implementing in-
frastructure code to address embarrassingly problems. Moreover, this programming environment
relieves developers from dealing with linearity, significantly reducing necessary effort.

In the case of the parallel average example, further optimization can be achieved by imple-
menting the entire exercise using the nfoldl higher-order function, dramatically reducing the
LoC from 50 to just 4.

We have determined that LoC is not a suitable metric for evaluating the Futures and Streams
modules. The Futures module simply provides wraps for the fork primitive (or forkWith) and
does not significantly affect LoC in its use-case implementations. Similarly, the Streams module
abstracts the stream programming paradigm inherent to the FreeST language through definitions
and abstractions. Unlike the Parallel module, it acts more like a helpful toolkit for a loosely
defined set of problems rather than providing a programming environment with strict practices
and patterns for a well-defined set of problems. Therefore, direct comparisons based on LoC are
not meaningful.

Chapter 5. Evaluation 58

Chapter 6

Conclusion and future work

FreeST is a concurrent programming language featuring context-free session types. However, its
applicability to real-world scenarios remains limited, and its interactions with various computing
concepts are still largely unexplored. Although some works have been done to extend the language
and investigate its interactions with concepts such as shared channels [?] and subtyping [48], its
potential in easing parallel and concurrent programming is not yet fully understood.

In this thesis, we explored the interaction of FreeST and session types with five prominent par-
allel and concurrent programming concepts and paradigms: data parallelism and embarrassingly
parallel problems, futures and divide-and-conquer, and streams. To support these concepts, we
proposed the integration of three new modules into the language, thereby facilitating parallel and
concurrent programming in FreeST.

We verified that FreeST struggled with addressing embarrassingly parallel problems due to
difficulties with linearity, state management, and overly complex, repetitive code. To mitigate
these challenges, we developed the Parallel module, inspired by MPI’s collective communication
operations. This module provides a specialized programming environment designed to handle
embarrassingly parallel problems effectively by reducing boilerplate code and allowing developers
to concentrate on the problem itself.

Although FreeST includes the fork primitive for launching asynchronous computations, it
lacks a straightforward way to retrieve their results. To resolve this, we introduced the Futures
module, which simplifies the retrieval of asynchronous computation results and facilitates the
divide-and-conquer paradigm in a manner similar to ForkJoin, which was previously challenging
and unintuitive without futures.

Lastly, we identified the inherent concurrent stream programming nature in FreeST. We pro-
posed the Streams module to promote more structured and well-defined programming practices.
This module abstracts stream-related behaviour and incorporates features inspired by the StreamIt
programming language.

Developing these modules required innovative and rigorous brainstorming to leverage FreeST’s
unique features effectively. To evaluate our contributions, we conducted three surveys—–one per
module–—assessing various metrics on a scale of 1 to 10 and including open-ended questions
for further feedback. Despite identifying several limitations within each module, mainly due to

59

Chapter 6. Conclusion and future work 60

inherent FreeST constraints, our surveys received very positive feedback, indicating a welcoming
reception and validating the effectiveness of our contributions.

Future work

While FreeST shows potential in enhancing parallel and concurrent programming through the
proposed modules, further research is needed to refine these modules and explore additional pro-
gramming paradigms, patterns, and applications.

One of the avenues to future work consists of enhancing the proposed modules, leveraging the
limitations identified during their development (discussed in Sections 4.1.5, 4.2.4, and 4.3.3) as
guidelines, and aiming to achieve more consistent and well-rounded modules. Addressing these
limitations would create more flexible modules, allowing broader use cases. Additionally, we
should consider the insights provided by the survey participants, who pointed out several opportu-
nities for improvement, particularly concerning usability.

In addition to the paradigms explored in this work, we encourage further investigation into
other programming paradigms and concepts to significantly extend FreeST’s parallel and con-
current capabilities. Examples include Functional Reactive Programming (FRP) [44], the actor
model [29, 28], and pseudorandom number generation (PRNG) [15]. Exploring these paradigms
will not only deepen FreeST’s functionality but also uncover new potential applications.

Bibliography

[1] Scala’s documentation on Futures and Promises. https://docs.scala-lang.org/
overviews/core/futures.html. Last accessed: July 2024.

[2] The Erlang programming language. https://www.erlang.org/. Last accessed: July
2024.

[3] The FreeST programming language. https://freest-lang.github.io. Last ac-
cessed: July 2024.

[4] The Go programming language. https://go.dev/. Last accessed: July 2024.

[5] The Haskell programming language. https://www.haskell.org. Last accessed: July
2024.

[6] The Java programming language. https://docs.oracle.com/en/java/. Last ac-
cessed: July 2024.

[7] The Rust programming language. https://www.rust-lang.org. Last accessed: July
2024.

[8] The StreamIt programming language. http://groups.csail.mit.edu/cag/

streamit/index.shtml. Last accessed: July 2024.

[9] Streamit cookbook. http://groups.csail.mit.edu/cag/streamit/papers/
streamit-cookbook.pdf, 2006.

[10] Tyler Akidau, Slava Chernyak, and Reuven Lax. Streaming Systems: The What, Where,
When, and how of Large-scale Data Processing. O’Reilly, 2018.

[11] Bernardo Almeida, Andreia Mordido, and Vasco T. Vasconcelos. Freest: Context-free ses-
sion types in a functional language. In Proceedings Programming Language Approaches
to Concurrency- and Communication-cEntric Software, PLACES@ETAPS 2019, Prague,
Czech Republic, 7th April 2019, 2019.

[12] David R. Anderson, Dennis J. Sweeney, Thomas A. Williams, Jeffrey D. Camm, and James J.
Cochran. Statistics for Business & Economics. Cengage Learning, 2016.

61

https://docs.scala-lang.org/overviews/core/futures.html
https://docs.scala-lang.org/overviews/core/futures.html
https://www.erlang.org/
https://freest-lang.github.io
https://go.dev/
https://www.haskell.org
https://docs.oracle.com/en/java/
https://www.rust-lang.org
http://groups.csail.mit.edu/cag/streamit/index.shtml
http://groups.csail.mit.edu/cag/streamit/index.shtml
http://groups.csail.mit.edu/cag/streamit/papers/streamit-cookbook.pdf
http://groups.csail.mit.edu/cag/streamit/papers/streamit-cookbook.pdf

Bibliography 62

[13] Joe Armstrong. Programming Erlang: Software for a Concurrent World. Pragmatic Book-
shelf, Dallas, TX, 2 edition, 2013.

[14] Henry G. Baker and Carl Hewitt. The incremental garbage collection of processes. In James
Low, editor, Proceedings of the 1977 Symposium on Artificial Intelligence and Programming
Languages, USA, August 15-17, 1977. ACM, 1977.

[15] Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid. Recommenda-
tion for key management – part 1: General (revision 3). NIST Special Publication Revision,
01 2005.

[16] Diogo Barros, Andreia Mordido, and Vasco T. Vasconcelos. Shared channels on context-free
session types. 2023.

[17] Jonathan Beard. A short intro to stream processing. https://www.jonathanbeard.
io/blog/2015/09/19/streaming-and-dataflow.html. Last accessed: July
2024.

[18] Jim Blandy, Jason Orendorff, and Leonora F S Tindall. Programming Rust. O’Reilly Media,
Sebastopol, CA, 2 edition, June 2021.

[19] Jérôme Clet-Ortega, Patrick Carribault, and Marc Pérache. Evaluation of openmp task
scheduling algorithms for large NUMA architectures. In Euro-Par 2014 Parallel Processing -
20th International Conference, Porto, Portugal, August 25-29, 2014. Proceedings. Springer,
2014.

[20] Melvin E. Conway. A multiprocessor system design. In Proceedings of the November 12-
14, 1963, Fall Joint Computer Conference, New York, NY, USA, 1963. Association for
Computing Machinery.

[21] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms, 3rd Edition. MIT Press, 2009.

[22] Katherine Cox-Buday. Concurrency in Go: Tools and Techniques for Developers. O’Reilly
Media, Inc., 1st edition, 2017.

[23] Alejandro Duran, Julita Corbalan, and Eduard Ayguade. An adaptive cut-off for task par-
allelism. In SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,
2008.

[24] Alcides Fonseca and Bruno Cabral. Evaluation of runtime cut-off approaches for parallel
programs. In High Performance Computing for Computational Science - VECPAR 2016 -
12th International Conference, Porto, Portugal, June 28-30, 2016, Revised Selected Papers.
Springer, 2016.

https://www.jonathanbeard.io/blog/2015/09/19/streaming-and-dataflow.html
https://www.jonathanbeard.io/blog/2015/09/19/streaming-and-dataflow.html

Bibliography 63

[25] Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta
Informatica, (2-3), 2005.

[26] Brian Goetz, Tim Peierls, Joshua J. Bloch, Joseph Bowbeer, David Holmes, and Doug Lea.
Java Concurrency in Practice. Addison-Wesley, 2006.

[27] Maurice Herlihy and Nir Shavit. The art of multiprocessor programming. Morgan Kaufmann,
2008.

[28] Carl Hewitt. Viewing control structures as patterns of passing messages. Artif. Intell., (3),
1977.

[29] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. A universal modular ACTOR for-
malism for artificial intelligence. In Proceedings of the 3rd International Joint Conference on
Artificial Intelligence. Standford, CA, USA, August 20-23, 1973. William Kaufmann, 1973.

[30] Charles A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM, (7), 1961.

[31] Charles A. R. Hoare. Communicating sequential processes. Commun. ACM, (8), 1978.

[32] Kohei Honda. Types for dyadic interaction. In CONCUR ’93, 4th International Conference
on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993, Proceedings. Springer,
1993.

[33] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. Springer, 1998.

[34] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, (1), 2016.

[35] Simon L. Peyton Jones, Andrew D. Gordon, and Sigbjørn Finne. Concurrent haskell. In
Conference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, Papers Presented at the Symposium, St. Petersburg Beach,
Florida, USA, January 21-24, 1996. ACM Press, 1996.

[36] Wes Kendall, Dwaraka Nath, and Wesley Bland. MPI Tutorial. https://

mpitutorial.com. Last accessed: July 2024.

[37] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to Parallel
Computing. Benjamin/Cummings, 1994.

[38] Sivaramakrishnan Lakshmivarahan, Sudarshan K. Dhall, and Leslie L. Miller. Parallel sort-
ing algorithms. Adv. Comput., 1984.

[39] Doug Lea. Concurrent programming in Java - design principles and patterns. Addison-
Wesley-Longman, 1997.

https://mpitutorial.com
https://mpitutorial.com

Bibliography 64

[40] Doug Lea. A java fork/join framework. In Dennis Gannon and Piyush Mehrotra, editors,
Proceedings of the ACM 2000 Java Grande Conference, San Francisco, CA, USA, June 3-5,
2000. ACM, 2000.

[41] Simon Marlow. Parallel and concurrent programming in haskell. In Central European Func-
tional Programming School - 4th Summer School, CEFP 2011, Budapest, Hungary, June
14-24, 2011, Revised Selected Papers. Springer, 2011.

[42] Simon Marlow, Simon L. Peyton Jones, and Satnam Singh. Runtime support for multicore
haskell. In Proceeding of the 14th ACM SIGPLAN international conference on Functional
programming, ICFP 2009, Edinburgh, Scotland, UK, August 31 - September 2, 2009. ACM,
2009.

[43] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 4.0,
June 2021.

[44] Henrik Nilsson, Antony Courtney, and John Peterson. Functional reactive programming,
continued. In Manuel M. T. Chakravarty, editor, Proceedings of the 2002 ACM SIGPLAN
Workshop on Haskell, Haskell 2002, Pittsburgh, Pennsylvania, USA, October 3, 2002. ACM,
2002.

[45] Peter S. Pacheco. An Introduction to Parallel Programming. Morgan Kaufmann, 2011.

[46] César Santos, Francisco Martins, and Vasco Thudichum Vasconcelos. Deductive verification
of parallel programs using why3. In Proceedings 8th Interaction and Concurrency Experi-
ence, ICE 2015, Grenoble, France, 4-5th June 2015, 2015.

[47] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating System Concepts,
10th Edition. Wiley, 2018.

[48] Gil Silva, Andreia Mordido, and Vasco T. Vasconcelos. Subtyping context-free session types.
In 34th International Conference on Concurrency Theory, CONCUR 2023, September 18-23,
2023, Antwerp, Belgium. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[49] Andrew S. Tanenbaum. Modern operating systems, 3rd Edition. Pearson Education, 2008.

[50] Peter Thiemann and Vasco T. Vasconcelos. Context-free session types. In Proceedings of
the 21st ACM SIGPLAN International Conference on Functional Programming, ICFP 2016,
Nara, Japan, September 18-22, 2016. ACM, 2016.

[51] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit: A language for
streaming applications. In Compiler Construction, 11th International Conference, CC 2002,
Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2002, Grenoble, France, April 8-12, 2002, Proceedings. Springer, 2002.

Appendix A

Modules’ implementation code

A.1 Parallel module

1 module Parallel where

2
3 import List

4
5 --

6
7 -- # ManagerStream Protocol & Comm

8
9 type ManagerStream = ↑{ Broadcast: ![Int]

10 , Scatter : ![Int]

11 , Gather : ?[Int]

12 , Reduce : ?Int

13 , Done : Wait} ; ManagerStream

14
15 type WorkerStream = dualof ManagerStream

16
17 data Comm = WNil () | Worker ManagerStream Comm

18
19 --

20
21 -- # Matching the protocol for each operation from the workers’ side

22
23 wbarrier : WorkerStream ↔ WorkerStream

24 wbarrier c = let (_, c) = c ε wgather [] ε wbroadcast in c

25
26 wbroadcast : WorkerStream ↔ ([Int], WorkerStream)

27 wbroadcast (Broadcast c) = receive c

28
29 wscatter : WorkerStream ↔ ([Int], WorkerStream)

30 wscatter (Scatter c) = receive c

31
32 wgather : [Int] ↔ WorkerStream ↔ WorkerStream

33 wgather xs (Gather c) = send xs c

34
35 wreduce : Int ↔ WorkerStream ↔ WorkerStream

36 wreduce n (Reduce c) = send n c

37
38 wallgather : [Int] ↔ WorkerStream

65

Appendix A. Modules’ implementation code 66

39 ↔ ([Int], WorkerStream)

40 wallgather xs c = c ε wgather xs ε wbroadcast

41
42 wallreduce : Int ↔ WorkerStream

43 ↔ ([Int], WorkerStream)

44 wallreduce xs c = c ε wreduce xs ε wbroadcast

45
46 wdone : WorkerStream ↔ ()

47 wdone (Done c) = close c

48
49 --

50
51 -- # Matching the protocol for each operation from the manager’s side

52
53 mbarrier : Comm ↔ Comm

54 mbarrier ws = let (_, ws) = mgather ws in

55 mbroadcast [] ws

56
57 mbroadcast : [Int] ↔ Comm ↔ Comm

58 mbroadcast _ (WNil _) = WNil ()

59 mbroadcast xs (Worker w ws) = Worker (w ε select Broadcast ε send xs)

60 (mbroadcast xs ws)

61
62 mscatter : [Int] ↔ Comm ↔ Comm

63 mscatter xs ws = let (wsl, ws) = commLength ws in

64 mscatter’ wsl (length xs) xs ws

65 -- where

66 mscatter’ : Int ↔ Int ↔ [Int] ↔ Comm ↔ Comm

67 mscatter’ _ _ _ (WNil _) = WNil ()

68 mscatter’ n xsl xs (Worker w ws) =

69 let chunk = xsl / n + (if mod xsl n /= 0 then 1 else 0) in

70 let (xs, ys) = splitAt chunk xs in

71 Worker (w ε select Scatter ε send xs) $

72 mscatter’ (n - 1) (xsl - chunk) ys ws

73
74 mgather : Comm ↔ ([Int], Comm)

75 mgather (WNil _) = ([], WNil ())

76 mgather (Worker w ws) = let (xs, w) = w ε select Gather ε receive in

77 let (ys, ws) = mgather ws in

78 (xs ++ ys, Worker w ws)

79
80 mreduce : (Int ↔ Int ↔ Int) ↔ Int ↔ Comm ↔ (Int, Comm)

81 mreduce f z (WNil _) = (z, WNil ())

82 mreduce f z (Worker w ws) =

83 let (x, ws) = mreduce f z ws in

84 let (y, w) = w ε select Reduce ε receive in

85 (f y x, Worker w ws)

86
87 mallgather : Comm ↔ ([Int], Comm)

88 mallgather ws = let (xs, ws) = mgather ws in

89 (xs, mbroadcast xs ws)

90
91 mallreduce : (Int ↔ Int ↔ Int) ↔ Int ↔ Comm ↔ (Int, Comm)

92 mallreduce f z ws = let (xs, ws) = mreduce f z ws in

93 (xs, mbroadcast [xs] ws)

94

Appendix A. Modules’ implementation code 67

95 mdone : Comm ↔ ()

96 mdone (WNil _) = ()

97 mdone (Worker w ws) = w ε select Done ε wait;

98 mdone ws

99
100 --

101
102 -- # Initialization

103
104 initialize : (Comm ↔ a) ↔ (WorkerStream ↔ ())

105 ↔ Int ↔ a

106 initialize m w n = m $ winitialize w n

107 -- where

108 winitialize : (WorkerStream ↔ ()) ↔ Int ↔ Comm

109 winitialize w n

110 | n == 0 = WNil ()

111 | otherwise = Worker (forkWith @ManagerStream @() w)

112 (winitialize w (n - 1))

113
114 --

115
116 -- # Parallelized high level operations on lists using collective

communication

117
118 -- | Parallelized map

119 nmap : Int ↔ (Int ↔ Int) ↔ [Int] ↔ [Int]

120 nmap n f xs = initialize @[Int] (mapManager xs) (mapWorker f) n

121
122 mapManager : [Int] ↔ Comm ↔ [Int]

123 mapManager xs ws = let (xs, ws) = ws ε mscatter xs ε mgather in

124 mdone ws; xs

125
126 mapWorker : (Int ↔ Int) ↔ WorkerStream ↔ ()

127 mapWorker f c = let (xs, c) = wscatter c in

128 c ε wgather (map f xs) ε wdone

129
130
131 -- | Parallelized foldl

132 nfoldl : Int ↔ (Int ↔ Int ↔ Int) ↔ Int ↔ [Int] ↔ Int

133 nfoldl n f z xs = initialize @Int (foldlManager f z xs)

134 (foldlWorker f z) n

135
136 foldlManager : (Int ↔ Int ↔ Int) ↔ Int ↔ [Int] ↔ Comm ↔ Int

137 foldlManager f z xs ws = let (x, ws) = ws ε mscatter xs

138 ε mreduce f z in

139 mdone ws; x

140
141 foldlWorker : (Int ↔ Int ↔ Int) ↔ Int ↔ WorkerStream ↔ ()

142 foldlWorker f z c = let (xs, c) = wscatter c in

143 c ε wreduce (foldl @Int f z xs) ε wdone

144
145
146 -- | Parallelized foldr

147 nfoldr : Int ↔ (Int ↔ Int ↔ Int) ↔ Int ↔ [Int] ↔ Int

148 nfoldr n f z xs = initialize @Int (foldrManager f z xs)

149 (foldrWorker f z) n

Appendix A. Modules’ implementation code 68

150
151 foldrManager : (Int ↔ Int ↔ Int) ↔ Int ↔ [Int] ↔ Comm ↔ Int

152 foldrManager f z xs ws = let (x, ws) = ws ε mscatter xs

153 ε mreduce f z in

154 mdone ws; x

155
156 foldrWorker : (Int ↔ Int ↔ Int) ↔ Int ↔ WorkerStream ↔ ()

157 foldrWorker f z c = let (xs, c) = wscatter c in

158 c ε wreduce (foldr @Int f z xs) ε wdone

159
160
161 -- | Parallelized filter

162 nfilter : Int ↔ (Int ↔ Bool) ↔ [Int] ↔ [Int]

163 nfilter n f xs = initialize @[Int] (filterManager xs)

164 (filterWorker f) n

165
166 filterManager : [Int] ↔ Comm ↔ [Int]

167 filterManager xs ws = let (xs, ws) = ws ε mscatter xs ε mgather in

168 mdone ws; xs

169
170 filterWorker : (Int ↔ Bool) ↔ WorkerStream ↔ ()

171 filterWorker f c = let (xs, c) = wscatter c in

172 c ε wgather (filter f xs) ε wdone

173
174
175 -- | Parallelized zipWith

176 nzipWith : Int ↔ (Int ↔ Int ↔ Int) ↔ [Int] ↔ [Int] ↔ [Int]

177 nzipWith n f xs ys = initialize @[Int] (zipWithManager xs ys)

178 (zipWithWorker f) n

179
180 zipWithManager : [Int] ↔ [Int] ↔ Comm ↔ [Int]

181 zipWithManager xs ys ws =

182 let (zs, ws) = ws ε mscatter xs ε mscatter ys ε mgather in

183 mdone ws; zs

184
185 zipWithWorker : (Int ↔ Int ↔ Int) ↔ WorkerStream ↔ ()

186 zipWithWorker f c = let (xs, c) = wscatter c in

187 let (ys, c) = wscatter c in

188 c ε wgather (zipWith f xs ys) ε wdone

189
190
191 -- | Parallelized zipWith3

192 nzipWith3 : Int ↔ (Int ↔ Int ↔ Int ↔ Int) ↔ [Int] ↔ [Int]

193 ↔ [Int] ↔ [Int]

194 nzipWith3 n f xs ys zs = initialize @[Int] (zipWith3Manager xs ys zs)

195 (zipWith3Worker f) n

196
197 zipWith3Manager : [Int] ↔ [Int] ↔ [Int] ↔ Comm ↔ [Int]

198 zipWith3Manager xs ys zs ws =

199 let (rs, ws) = ws ε mscatter xs ε mscatter ys

200 ε mscatter zs ε mgather in

201 mdone ws; rs

202
203 zipWith3Worker : (Int ↔ Int ↔ Int ↔ Int) ↔ WorkerStream ↔ ()

204 zipWith3Worker f c = let (xs, c) = wscatter c in

205 let (ys, c) = wscatter c in

Appendix A. Modules’ implementation code 69

206 let (zs, c) = wscatter c in

207 c ε wgather (zipWith3 f xs ys zs) ε wdone

208
209 --

210
211 -- | A function that return the length of a list of

212 -- | ManagerStream endpoints.

213 commLength : Comm ↔ (Int, Comm)

214 commLength (WNil _) = (0, WNil ())

215 commLength (Worker w ws) = let (i, ws) = commLength ws in

216 (1 + i, Worker w ws)

A.2 Futures module

1 module Futures where

2
3 -- When possible, this type will represent a Future

4 -- type Future = ?a;Wait

5
6 future : (() ↔ a) ↔ ?a;Wait

7 future f = forkWith @(?a;Wait) @()

8 (\c:!a;Close 1↔ c ε send (f ()) ε close)

9
10 block : ?a;Wait ↔ a

11 block = receiveAndWait

12
13 delay : (() ↔ a) ↔ (() ↔ b) ↔ ?b;Wait

14 delay f1 f2 = future @b (_:() ↔ f1 (); f2 ())

A.3 Streams module

1 module Streams where

2
3 -- # Naming convention

4 -- | O - output (endpoint) of a stream

5 -- | I - input (endpoint) of a stream

6
7 type OStream = ↑{More: !Int;OStream, Done: Wait}

8 type IStream = dualof OStream

9
10 --

11
12 -- # Basic functions

13
14 sendS : Int ↔ OStream ↔ OStream

15 sendS x o = o ε select More ε send x

16
17 forward : IStream ↔ OStream 1↔ OStream

18 forward (Done i) o = close i; o

19 forward (More i) o = let (x, i) = receive i in

20 o ε sendS x ε forward i

21

Appendix A. Modules’ implementation code 70

22 waitS : OStream ↔ ()

23 waitS o = o ε select Done ε wait

24
25 --

26
27 -- # Splitter and joiner functions

28
29 splitSDup : IStream ↔ OStream 1↔ OStream 1↔ ()

30 splitSDup (Done i) o1 o2 = waitS o1; waitS o2; close i

31 splitSDup (More i) o1 o2 = let (x, i) = receive i in

32 splitSDup i (sendS x o1) (sendS x o2)

33
34 splitSAlt : IStream ↔ OStream 1↔ OStream 1↔ ()

35 splitSAlt (Done i) o1 o2 = waitS o1; waitS o2; close i

36 splitSAlt (More i) o1 o2 = let (x, i) = receive i in

37 splitSAlt i o2 (sendS x o1)

38
39 splitSWith : (Int ↔ Bool) ↔ IStream ↔ OStream 1↔ OStream 1↔ ()

40 splitSWith p (Done i) o1 o2 = waitS o1; waitS o2; close i

41 splitSWith p (More i) o1 o2 =

42 let (x, i) = receive i in

43 if p x then splitSWith p i (sendS x o1) o2

44 else splitSWith p i o1 (sendS x o2)

45
46 joiner : IStream ↔ IStream 1↔ OStream 1↔ ()

47 joiner i1 (Done i2) o = waitS i2; forward i1 o

48 joiner (Done i1) i2 o = waitS i1; forward i2 o

49 joiner (More i1) (More i2) o = let (x, i1) = receive i1 in

50 let (y, i2) = receive i2 in

51 joiner i1 i2 (o ε sendS x ε sendS y)

52
53 --

54
55 -- # Converting to and from a list

56
57 fromList : [Int] ↔ OStream ↔ ()

58 fromList [] o = o ε waitS

59 fromList (x::xs) o = o ε sendS x ε fromList xs

60
61 toList : IStream ↔ [Int]

62 toList (Done i) = close i; []

63 toList (More i) = let (x, i) = receive i in x :: toList i

64
65 --

66
67 -- # Stream transformations

68
69 mapS : (Int ↔ Int) ↔ IStream ↔ OStream 1↔ ()

70 mapS f (Done i) o = close i; waitS o

71 mapS f (More i) o = let (x, i) = receive i in

72 mapS f i (sendS (f x) o)

73
74 foldlS : (Int ↔ Int ↔ Int) ↔ Int ↔ IStream ↔ Int

75 foldlS f z (Done i) = close i; z

76 foldlS f z (More i) = let (x, i) = receive i in

77 foldlS f (f z x) i

Appendix A. Modules’ implementation code 71

78
79 foldrS : (Int ↔ Int ↔ Int) ↔ Int ↔ IStream ↔ Int

80 foldrS f z (Done i) = close i; z

81 foldrS f z (More i) = let (x, i) = receive i in

82 f x (foldrS f z i)

83
84 filterS : (Int ↔ Bool) ↔ IStream ↔ OStream 1↔ ()

85 filterS p (Done i) o = close i; waitS o

86 filterS p (More i) o = let (x, i) = receive i in

87 filterS p i (if p x then sendS x o else o)

88
89 --

90
91 -- | Variation of ‘forkWith‘ which creates two channels instead of one.

92 forkWith2 : ↗ a:1A b:1A c . (dualof a 1↔ dualof b 1↔ c) ↔ (a, b)

93 forkWith2 f = let (x1, y1) = new @a () in

94 let (x2, y2) = new @b () in

95 fork (_:() 1↔ f y1 y2);

96 (x1, x2)

Appendix A. Modules’ implementation code 72

Appendix B

FEP-0009: Add new
concurrency-related primitives to
FreeST

Close issue

FEP-0009: Add new concurrency-related primitives to FreeST

FEP-0009: Add new concurrency-related primitives to FreeST

Overview

Header Value

FEP 0009

Title Add new concurrency-related primitives to FreeST

Author @glopes

Status Draft

Type Enhancement

Created 27-april-2022

FreeST-Version v3.0.0

Depends on -

Abstract

As a concurrent programming language, having more control over threads and the overall concurrency system in FreeST would be helpful.

Haskell offers several abstractions so users can manipulate or be knowledgeable of the scheduler information in runtime. Most of their behaviour is
currently inaccessible in FreeST, such as getting the ID of a thread or "blocking" a thread for a particular duration.

Motivation

Some languages are similar to FreeST in their approach and view towards concurrency. We frequently compare FreeST to the Go programming
language to better explain and expose FreeST's advantages in what it is achieving. Both work with lightweight threads and channels as the (primary)
source of communication between processes.

Other languages come to mind when considering constructing concurrent systems, such as Rust or even Java, as a more mainstream example. In the
case of these languages, we (mostly) work with system threads, which are way more expensive and reflect a very different scheduler that manages
their lifetime.

All these languages offer essential primitives that allow programmers to access information on their system (e.g. the number of cores available), ways
of interacting with the runtime system or controlling concurrent units (threads). The primitives available vary accordingly with each language's needs
and particular characteristics.

This behaviour is currently inaccessible in FreeST and is essential for implementing several concurrent patterns, complex structures and ambitious
systems. Since we depend on Haskell's scheduler to manipulate and manage threads and are not allowed to interact with its runtime system, we can
not implement the needed primitives for this behaviour.

Specification

The following primitives I am proposing, borrowed from the Haskell Control.Concurrent library, are primitives I noticed to be meaningful and offer
behaviour that FreeST does not currently allow:

getNumCores - Return the number of system threads that can run truly simultaneously (on separate physical processors) at any given time.

In concurrent programs, this primitive might be useful, for example, to control the number of processes that are "forked" programmatically or by

offering the possibility of intuitively estimating it.

It is a small addition, but nearly every popular programming language focusing on concurrency allows this (Go and Rust, for example).

setNumCores - Set the number of system threads that can run truly simultaneously (on separate physical processor at any given time).

Currently, FreeST programs are predefined to run on the maximum number of system threads possible in the project's package.yaml file in the

ghc-options: -main-is FreeST -threaded -rtsopts -with-rtsopts=-N executable configuration line. Although, "It is strongly

recommended that the number of capabilities is not set larger than the number of physical processor cores, and it may often be beneficial to leave

one or more cores free to avoid contention with other processes in the machine.".

Fortunately, it is possible to set the number of system threads to a different number by executing the program with the command freest

program.fst +RTS -Nx , being x the number of system threads available to the program. However, a primitive that offers the possibility of altering

this programmatically at any given moment might be an interesting addition.

Once again, it is a small addition. However, this behaviour appears in programming languages that work with lightweight threads (Go, for example).

myThreadId - Returns the Id of the calling thread.

threadCore - Returns the number of the core on which the thread is currently running.

This primitive would allow us to create structures that simulate the state of each thread system queue in run-time related to the distribution of

lightweight threads in several system threads.

For a personal application, I could use this to the ForkJoin granularity control technique called Surplus: Before creating a new task, the number of

queued tasks (lightweight threads) in the current (system) thread that exceeds the number of tasks in other queues is compared to a

parameterized threshold limit. If the surplus tasks count is higher than the threshold, the task will be executed sequentially. If the surplus tasks

count is lower than the threshold, the task is created in parallel.

threadDelay - Suspends the current thread for a given number of microseconds.

This one is debatable. Most distributed systems frequently use this primitive (or an equivalent one) to synchronise part of asynchronous systems in

specific scenarios. There are a lot of legitimate real-world applications, such as avoiding busy waiting by implementing delays between attempts at

some execution. Issue #161 (closed) proposes another application using this primitive. However, this mechanism is a critical source of deadlocks,

something we try distancing ourselves from.

Moreover, nearly every popular programming language focusing on distributed systems allows this (C, Go, and Rust, for example).

These primitives can be consulted at Control.Concurrent for more details.

Syntax and Implementation

Most of the implementation should be straightforward. Like other Haskell primitives built into FreeST's Prelude, we have to add and adjust the
mentioned primitives in the Interpreter.Builtin .

In the Prelude, we would maybe have the following signatures:

I left ThreadId as a to-be defined type because the original myThreadId and threadCore (called threadCapability in Haskell) return and receive a
particular data type ThreadId :

"A ThreadId is an abstract type representing a handle to a thread." and "(...) if you have a ThreadId , you essentially have a pointer to the thread
itself."

We would probably need to give this data type some special treatment since it appears impossible to transform an Int or String into a Haskell
ThreadId .

A more basic version of the primitives I am proposing could be:

myThreadId returns a conversion of the original Haskell threadId to a String ("The Show instance lets you convert an arbitrary-valued ThreadId to
string form..."). As for threadCore , we could simplify its logic and behaviour by internally executing a myThreadId , returning the ThreadId of the
current thread, and applying it to Haskell's threadCapability first parameter, returning the number of the capability on which the thread is currently
running.

In short, the implementation of getNumCores , setNumCores and threadDelay is immediate. On the other hand, myThreadId and threadCore
following my suggestion are also immediate; otherwise, it might require more time and effort for a more in-depth analysis for its implementation.

If FreeST happened to be written in another programming language, we would have to adjust the primitive association to a distinct language's
concurrent API that interacts with a very particular scheduler. Then, FreeST would be significantly different, requiring a different approach to analyse its
needs, which could impact this proposal.

Edited 1 year ago by Guilherme Lopes

0 0

Vasco T. Vasconcelos Context Free Sessions Issues #173

Open Created 1 year ago by Guilherme Lopes Developer

type ThreadId = ??

getNumCores : Int
setNumCores : Int -> ()

myThreadId : ThreadId
threadCore : ThreadId -> Int

threadDelay : Int -> ()

data ThreadId = ThreadId ThreadID#

type ThreadId = String

myThreadId : ThreadId
threadCore : Int

Drag your designs here or click to upload.

Linked issues 0

Oldest first Show all activity Create merge request

Guilherme Lopes added label 1 year ago@glopes Proposal

Guilherme Lopes changed the description 1 year ago@glopes

Guilherme Lopes changed the description 1 year ago@glopes

Vasco T. Vasconcelos · 1 year ago Owner

It may not be a good idea to set ThreadId as an alias to String . This would allow programmers to invent thread identifiers. What would
be result of threadCore "hi there!" ? Perhaps a primitive type would be better.

My other point is about the last paragraph in the FEP. What if we decide to write a backend for a language other than Haskell, Chez
Scheme for example? Would all these primitives still be available? Or is there a way to encapsulate all these primitives in a module and
have modules that may not be available in some backends?

@vv

Vasco T. Vasconcelos mentioned in issue #161 (closed) 1 year ago@vv

Markdown and quick actions are supported Attach a file

Write Preview

Write a comment or drag your files here…

 Close issueComment

Open FEP-0009: Add new concurrency-related primitives to FreeSTC

Menu Search GitLab

73

Appendix B. FEP-0009: Add new concurrency-related primitives to FreeST 74

Close issue

FEP-0009: Add new concurrency-related primitives to FreeST

FEP-0009: Add new concurrency-related primitives to FreeST

Overview

Header Value

FEP 0009

Title Add new concurrency-related primitives to FreeST

Author @glopes

Status Draft

Type Enhancement

Created 27-april-2022

FreeST-Version v3.0.0

Depends on -

Abstract

As a concurrent programming language, having more control over threads and the overall concurrency system in FreeST would be helpful.

Haskell offers several abstractions so users can manipulate or be knowledgeable of the scheduler information in runtime. Most of their behaviour is
currently inaccessible in FreeST, such as getting the ID of a thread or "blocking" a thread for a particular duration.

Motivation

Some languages are similar to FreeST in their approach and view towards concurrency. We frequently compare FreeST to the Go programming
language to better explain and expose FreeST's advantages in what it is achieving. Both work with lightweight threads and channels as the (primary)
source of communication between processes.

Other languages come to mind when considering constructing concurrent systems, such as Rust or even Java, as a more mainstream example. In the
case of these languages, we (mostly) work with system threads, which are way more expensive and reflect a very different scheduler that manages
their lifetime.

All these languages offer essential primitives that allow programmers to access information on their system (e.g. the number of cores available), ways
of interacting with the runtime system or controlling concurrent units (threads). The primitives available vary accordingly with each language's needs
and particular characteristics.

This behaviour is currently inaccessible in FreeST and is essential for implementing several concurrent patterns, complex structures and ambitious
systems. Since we depend on Haskell's scheduler to manipulate and manage threads and are not allowed to interact with its runtime system, we can
not implement the needed primitives for this behaviour.

Specification

The following primitives I am proposing, borrowed from the Haskell Control.Concurrent library, are primitives I noticed to be meaningful and offer
behaviour that FreeST does not currently allow:

getNumCores - Return the number of system threads that can run truly simultaneously (on separate physical processors) at any given time.

In concurrent programs, this primitive might be useful, for example, to control the number of processes that are "forked" programmatically or by

offering the possibility of intuitively estimating it.

It is a small addition, but nearly every popular programming language focusing on concurrency allows this (Go and Rust, for example).

setNumCores - Set the number of system threads that can run truly simultaneously (on separate physical processor at any given time).

Currently, FreeST programs are predefined to run on the maximum number of system threads possible in the project's package.yaml file in the

ghc-options: -main-is FreeST -threaded -rtsopts -with-rtsopts=-N executable configuration line. Although, "It is strongly

recommended that the number of capabilities is not set larger than the number of physical processor cores, and it may often be beneficial to leave

one or more cores free to avoid contention with other processes in the machine.".

Fortunately, it is possible to set the number of system threads to a different number by executing the program with the command freest

program.fst +RTS -Nx , being x the number of system threads available to the program. However, a primitive that offers the possibility of altering

this programmatically at any given moment might be an interesting addition.

Once again, it is a small addition. However, this behaviour appears in programming languages that work with lightweight threads (Go, for example).

myThreadId - Returns the Id of the calling thread.

threadCore - Returns the number of the core on which the thread is currently running.

This primitive would allow us to create structures that simulate the state of each thread system queue in run-time related to the distribution of

lightweight threads in several system threads.

For a personal application, I could use this to the ForkJoin granularity control technique called Surplus: Before creating a new task, the number of

queued tasks (lightweight threads) in the current (system) thread that exceeds the number of tasks in other queues is compared to a

parameterized threshold limit. If the surplus tasks count is higher than the threshold, the task will be executed sequentially. If the surplus tasks

count is lower than the threshold, the task is created in parallel.

threadDelay - Suspends the current thread for a given number of microseconds.

This one is debatable. Most distributed systems frequently use this primitive (or an equivalent one) to synchronise part of asynchronous systems in

specific scenarios. There are a lot of legitimate real-world applications, such as avoiding busy waiting by implementing delays between attempts at

some execution. Issue #161 (closed) proposes another application using this primitive. However, this mechanism is a critical source of deadlocks,

something we try distancing ourselves from.

Moreover, nearly every popular programming language focusing on distributed systems allows this (C, Go, and Rust, for example).

These primitives can be consulted at Control.Concurrent for more details.

Syntax and Implementation

Most of the implementation should be straightforward. Like other Haskell primitives built into FreeST's Prelude, we have to add and adjust the
mentioned primitives in the Interpreter.Builtin .

In the Prelude, we would maybe have the following signatures:

I left ThreadId as a to-be defined type because the original myThreadId and threadCore (called threadCapability in Haskell) return and receive a
particular data type ThreadId :

"A ThreadId is an abstract type representing a handle to a thread." and "(...) if you have a ThreadId , you essentially have a pointer to the thread
itself."

We would probably need to give this data type some special treatment since it appears impossible to transform an Int or String into a Haskell
ThreadId .

A more basic version of the primitives I am proposing could be:

myThreadId returns a conversion of the original Haskell threadId to a String ("The Show instance lets you convert an arbitrary-valued ThreadId to
string form..."). As for threadCore , we could simplify its logic and behaviour by internally executing a myThreadId , returning the ThreadId of the
current thread, and applying it to Haskell's threadCapability first parameter, returning the number of the capability on which the thread is currently
running.

In short, the implementation of getNumCores , setNumCores and threadDelay is immediate. On the other hand, myThreadId and threadCore
following my suggestion are also immediate; otherwise, it might require more time and effort for a more in-depth analysis for its implementation.

If FreeST happened to be written in another programming language, we would have to adjust the primitive association to a distinct language's
concurrent API that interacts with a very particular scheduler. Then, FreeST would be significantly different, requiring a different approach to analyse its
needs, which could impact this proposal.

Edited 1 year ago by Guilherme Lopes

0 0

Vasco T. Vasconcelos Context Free Sessions Issues #173

Open Created 1 year ago by Guilherme Lopes Developer

type ThreadId = ??

getNumCores : Int
setNumCores : Int -> ()

myThreadId : ThreadId
threadCore : ThreadId -> Int

threadDelay : Int -> ()

data ThreadId = ThreadId ThreadID#

type ThreadId = String

myThreadId : ThreadId
threadCore : Int

Drag your designs here or click to upload.

Linked issues 0

Oldest first Show all activity Create merge request

Guilherme Lopes added label 1 year ago@glopes Proposal

Guilherme Lopes changed the description 1 year ago@glopes

Guilherme Lopes changed the description 1 year ago@glopes

Vasco T. Vasconcelos · 1 year ago Owner

It may not be a good idea to set ThreadId as an alias to String . This would allow programmers to invent thread identifiers. What would
be result of threadCore "hi there!" ? Perhaps a primitive type would be better.

My other point is about the last paragraph in the FEP. What if we decide to write a backend for a language other than Haskell, Chez
Scheme for example? Would all these primitives still be available? Or is there a way to encapsulate all these primitives in a module and
have modules that may not be available in some backends?

@vv

Vasco T. Vasconcelos mentioned in issue #161 (closed) 1 year ago@vv

Markdown and quick actions are supported Attach a file

Write Preview

Write a comment or drag your files here…

 Close issueComment

Open FEP-0009: Add new concurrency-related primitives to FreeSTC

Menu Search GitLab

Appendix B. FEP-0009: Add new concurrency-related primitives to FreeST 75

Close issue

FEP-0009: Add new concurrency-related primitives to FreeST

FEP-0009: Add new concurrency-related primitives to FreeST

Overview

Header Value

FEP 0009

Title Add new concurrency-related primitives to FreeST

Author @glopes

Status Draft

Type Enhancement

Created 27-april-2022

FreeST-Version v3.0.0

Depends on -

Abstract

As a concurrent programming language, having more control over threads and the overall concurrency system in FreeST would be helpful.

Haskell offers several abstractions so users can manipulate or be knowledgeable of the scheduler information in runtime. Most of their behaviour is
currently inaccessible in FreeST, such as getting the ID of a thread or "blocking" a thread for a particular duration.

Motivation

Some languages are similar to FreeST in their approach and view towards concurrency. We frequently compare FreeST to the Go programming
language to better explain and expose FreeST's advantages in what it is achieving. Both work with lightweight threads and channels as the (primary)
source of communication between processes.

Other languages come to mind when considering constructing concurrent systems, such as Rust or even Java, as a more mainstream example. In the
case of these languages, we (mostly) work with system threads, which are way more expensive and reflect a very different scheduler that manages
their lifetime.

All these languages offer essential primitives that allow programmers to access information on their system (e.g. the number of cores available), ways
of interacting with the runtime system or controlling concurrent units (threads). The primitives available vary accordingly with each language's needs
and particular characteristics.

This behaviour is currently inaccessible in FreeST and is essential for implementing several concurrent patterns, complex structures and ambitious
systems. Since we depend on Haskell's scheduler to manipulate and manage threads and are not allowed to interact with its runtime system, we can
not implement the needed primitives for this behaviour.

Specification

The following primitives I am proposing, borrowed from the Haskell Control.Concurrent library, are primitives I noticed to be meaningful and offer
behaviour that FreeST does not currently allow:

getNumCores - Return the number of system threads that can run truly simultaneously (on separate physical processors) at any given time.

In concurrent programs, this primitive might be useful, for example, to control the number of processes that are "forked" programmatically or by

offering the possibility of intuitively estimating it.

It is a small addition, but nearly every popular programming language focusing on concurrency allows this (Go and Rust, for example).

setNumCores - Set the number of system threads that can run truly simultaneously (on separate physical processor at any given time).

Currently, FreeST programs are predefined to run on the maximum number of system threads possible in the project's package.yaml file in the

ghc-options: -main-is FreeST -threaded -rtsopts -with-rtsopts=-N executable configuration line. Although, "It is strongly

recommended that the number of capabilities is not set larger than the number of physical processor cores, and it may often be beneficial to leave

one or more cores free to avoid contention with other processes in the machine.".

Fortunately, it is possible to set the number of system threads to a different number by executing the program with the command freest

program.fst +RTS -Nx , being x the number of system threads available to the program. However, a primitive that offers the possibility of altering

this programmatically at any given moment might be an interesting addition.

Once again, it is a small addition. However, this behaviour appears in programming languages that work with lightweight threads (Go, for example).

myThreadId - Returns the Id of the calling thread.

threadCore - Returns the number of the core on which the thread is currently running.

This primitive would allow us to create structures that simulate the state of each thread system queue in run-time related to the distribution of

lightweight threads in several system threads.

For a personal application, I could use this to the ForkJoin granularity control technique called Surplus: Before creating a new task, the number of

queued tasks (lightweight threads) in the current (system) thread that exceeds the number of tasks in other queues is compared to a

parameterized threshold limit. If the surplus tasks count is higher than the threshold, the task will be executed sequentially. If the surplus tasks

count is lower than the threshold, the task is created in parallel.

threadDelay - Suspends the current thread for a given number of microseconds.

This one is debatable. Most distributed systems frequently use this primitive (or an equivalent one) to synchronise part of asynchronous systems in

specific scenarios. There are a lot of legitimate real-world applications, such as avoiding busy waiting by implementing delays between attempts at

some execution. Issue #161 (closed) proposes another application using this primitive. However, this mechanism is a critical source of deadlocks,

something we try distancing ourselves from.

Moreover, nearly every popular programming language focusing on distributed systems allows this (C, Go, and Rust, for example).

These primitives can be consulted at Control.Concurrent for more details.

Syntax and Implementation

Most of the implementation should be straightforward. Like other Haskell primitives built into FreeST's Prelude, we have to add and adjust the
mentioned primitives in the Interpreter.Builtin .

In the Prelude, we would maybe have the following signatures:

I left ThreadId as a to-be defined type because the original myThreadId and threadCore (called threadCapability in Haskell) return and receive a
particular data type ThreadId :

"A ThreadId is an abstract type representing a handle to a thread." and "(...) if you have a ThreadId , you essentially have a pointer to the thread
itself."

We would probably need to give this data type some special treatment since it appears impossible to transform an Int or String into a Haskell
ThreadId .

A more basic version of the primitives I am proposing could be:

myThreadId returns a conversion of the original Haskell threadId to a String ("The Show instance lets you convert an arbitrary-valued ThreadId to
string form..."). As for threadCore , we could simplify its logic and behaviour by internally executing a myThreadId , returning the ThreadId of the
current thread, and applying it to Haskell's threadCapability first parameter, returning the number of the capability on which the thread is currently
running.

In short, the implementation of getNumCores , setNumCores and threadDelay is immediate. On the other hand, myThreadId and threadCore
following my suggestion are also immediate; otherwise, it might require more time and effort for a more in-depth analysis for its implementation.

If FreeST happened to be written in another programming language, we would have to adjust the primitive association to a distinct language's
concurrent API that interacts with a very particular scheduler. Then, FreeST would be significantly different, requiring a different approach to analyse its
needs, which could impact this proposal.

Edited 1 year ago by Guilherme Lopes

0 0

Vasco T. Vasconcelos Context Free Sessions Issues #173

Open Created 1 year ago by Guilherme Lopes Developer

type ThreadId = ??

getNumCores : Int
setNumCores : Int -> ()

myThreadId : ThreadId
threadCore : ThreadId -> Int

threadDelay : Int -> ()

data ThreadId = ThreadId ThreadID#

type ThreadId = String

myThreadId : ThreadId
threadCore : Int

Drag your designs here or click to upload.

Linked issues 0

Oldest first Show all activity Create merge request

Guilherme Lopes added label 1 year ago@glopes Proposal

Guilherme Lopes changed the description 1 year ago@glopes

Guilherme Lopes changed the description 1 year ago@glopes

Vasco T. Vasconcelos · 1 year ago Owner

It may not be a good idea to set ThreadId as an alias to String . This would allow programmers to invent thread identifiers. What would
be result of threadCore "hi there!" ? Perhaps a primitive type would be better.

My other point is about the last paragraph in the FEP. What if we decide to write a backend for a language other than Haskell, Chez
Scheme for example? Would all these primitives still be available? Or is there a way to encapsulate all these primitives in a module and
have modules that may not be available in some backends?

@vv

Vasco T. Vasconcelos mentioned in issue #161 (closed) 1 year ago@vv

Markdown and quick actions are supported Attach a file

Write Preview

Write a comment or drag your files here…

 Close issueComment

Open FEP-0009: Add new concurrency-related primitives to FreeSTC

Menu Search GitLab

Appendix B. FEP-0009: Add new concurrency-related primitives to FreeST 76

Appendix C

Surveys

C.1 Parallel module

77

Appendix C. Surveys 78

Appendix C. Surveys 79

Appendix C. Surveys 80

Appendix C. Surveys 81

Appendix C. Surveys 82

Appendix C. Surveys 83

Appendix C. Surveys 84

Appendix C. Surveys 85

Appendix C. Surveys 86

C.2 Futures module

Appendix C. Surveys 87

Appendix C. Surveys 88

Appendix C. Surveys 89

Appendix C. Surveys 90

Appendix C. Surveys 91

Appendix C. Surveys 92

C.3 Streams module

Appendix C. Surveys 93

Appendix C. Surveys 94

Appendix C. Surveys 95

Appendix C. Surveys 96

Appendix C. Surveys 97

Appendix C. Surveys 98

Appendix D

Survey insights

D.1 Parallel module

1. This module made it easy to abstract away all the boilerplate required to build a parallel
application and leave only the logic relevant to the domain. In other words, I thing your
goals have been met.

I have two complaints, both about names. First: I think, ‘dualof ParallelStream’ is used too
many times not to be given a synonym. It would make reading the type signatures much
easier. Second: the names of the operations on the worker’s side can be misleading. For
example, at first glance, ‘wscatter’ seems to imply that the worker is ‘scattering’ a list, when
it is being ‘scattered with’ it. While this was explained in the introduction, and it may be
easy to keep in mind when *writing* code, I think it can still be misleading when *read-
ing* code. Perhaps you could find more suggestive names for these operations – perhaps
including propositions, or different verb conjugations. I have no concrete suggestions for
now though, sorry :ˆ)

2. Again, creating the number of workers and reducing should be high-level functions, without
the need to close. That should be wrapped in a higher-level API without Session Types.

3. Very well documented

4. It is not straightforward to work with this module. It seems very promising and in the spirit
of channels and parallel/concurrent programming, but it will need very good documentation
to flatten the learning curve as much as possible. In my opinion, starting by giving pur-
pose to each primitive is better than presenting a primitive and expect the programmer to
have ‘hopes of using it’. Documentation and learning aside, it seems very easy once you
acquire the right mindset. My only ‘beef’ with it is that session types are not essential to
this implementation, it’s a “FreeST meets parallel programming” rather than a “FreeST has
essential tools and primitives for parallel programming” (at least in the case of MPI-style
programming). This is not inherently bad, but it might undermine the motivation of “Why
FreeST and not another language”

99

Appendix D. Survey insights 100

D.2 Futures module

1. This simple abstraction faithfully models a classic concurrent programming primitive using
FreeST’s session-typed channels. By providing this familiar construct, this module may help
new users adapt to the language, and by exposing simple session types in the type signature
of future and block, this module may also help new users understand how session types
work. For this reason I think it would be valuable to have a guide in the official website
that introduces this abstraction in familiar terms and gradually exposes the session-typed
‘machinery’ behind it.

It is unfortunate that the use of this module is currently impaired by the need to include type
applications and type signatures in lambda expressions, but I believe it will be much more
usable in the presence of type inference. The need to create a thunk to prevent evaluation
before the desired expression is passed to the future function seems to be unavoidable, but
since this is also a common idiom when forking new threads, it might be worth it to think
whether some syntactic sugar such as ‘(thunk e)’, or even ‘(\thunk e)’ would be a valuable
addition to the language.

2. Although not related to this module in specific, it may be weird for the new users to use
the future function like “future @Int (\ :() -> fibonacci (n - 1))” instead of “future @Int
(fibonacci (n - 1))”

3. Abstractions like these are extremely useful. They provide a simple and compact way to
implement solutions using the divide-and-conquer paradigm, which I find to be a natural
approach for handling concurrent programs.

Currently, implementing this in FreeST requires writing cumbersome boilerplate code to
fork new threads and manage data exchange through communication channels.

4. Without type inference, the syntax for the lambda that takes the Unit type becomes quite
distracting. The name Unit (à lá Scala) makes it more readable. And avoids the () literal vs
() type confusion (as in Haskell).

5. No documentation (or seems missing). Some descriptions on the first pages were a bit
confusing, rephrasing some lines should be good.

D.3 Streams module

1. The wide-scale use of this module seems to be limited by the language itself, which does
not support type operators or lists with elements other than integers. It’s use is also made
verbose by the need to include type applications, but seems very clean without it. The
forkWith2 function is quite useful, and I suspect other such helper functions will appear
in due time. It will be interesting to see how it will be used (and expanded) when these
limitations disappear.

Appendix D. Survey insights 101

2. It took me a while to understand the behaviour of each function and the example provided
since it uses a lot of forks

3. I wanted a non-session types API that would use the Session Type Checking to point errors
in my code. But I do not want to create processes manually.

4. I think this module is easier to understand and follow than the parallel module

5. Module seems to unify and simplify boiler-plate code for these types of problems so it’s
definitely a plus. I think it is very easy to use, however complete newbies might still struggle
with creating and managing channel endpoints (every endpoint is user managed). In terms
of use cases, for now they seem very slim, but maybe some problems in the realm of data
analysis or data processing will yield interesting cases (perhaps even AI?). My intuition
points to neural networks, or image processing (use a bitmap image for simplicity) as very
interesting opportunities.

	List of Figures
	List of Tables
	Introduction
	Background
	Terminology and concepts
	Programming paradigms
	Embarrassingly parallel problems
	Futures and promises
	Divide-and-conquer
	Streams

	Concurrency in programming languages
	Related work
	Message-Passing Interface
	ForkJoin
	StreamIt

	The FreeST programming language
	Session types
	The math client example
	Challenges

	Parallel and concurrent modules for FreeST
	The Parallel module
	Implementing Monte Carlo in FreeST
	Identifying parallel patterns
	Design and implementation
	Implementing Monte Carlo with the module
	Interprocess communication: Challenges and attempts

	The Futures module
	Design and implementation
	Addressing divide-and-conquer
	Implementing the Fibonacci sequence
	Comparison to ForkJoin and challenges

	The Streams module
	Design and implementation
	Implementing the quicksort algorithm
	Comparison to the StreamIt programming language

	Evaluation
	Surveys
	Design
	Results and analysis

	Lines of Code comparison

	Conclusion and future work
	References
	Modules' implementation code
	Parallel module
	Futures module
	Streams module

	FEP-0009: Add new concurrency-related primitives to FreeST
	Surveys
	Parallel module
	Futures module
	Streams module

	Survey insights
	Parallel module
	Futures module
	Streams module

