
Improving Parallel and 
Concurrent Programming 
in FreeST

STUDENT

Guilherme João Correia Lopes

ADVISORS

Andreia Mordido

Vasco Vasconcelos

1st October 2024

MSc in Software Engineering
Thesis Defense



Motivation & overviewI

Analysis

Identifying difficulties and 

challenges concerning usual 

parallel and concurrent 

programming practices.

Proposal

Elaboration of tools that address 

the identified challenges and 

improve the development 

experience.

Integration

Development of tools into 

modules suited to the language 

characteristics.

2

Improve FreeST’s 

practical parallel and concurrent capabilities!



Paradigms & conceptsII

3

Data parallelism
Addressing embarrassingly 

parallel problems

Futures
Asynchronous placeholders for 

pending results

• Data is divided into subsets and 

processed simultaneously by multiple 

processors.

• An embarrassingly parallel problem 

where minimal effort is required to 

separate the problem into multiple 

parallel tasks.

• The representation of a promise to 

deliver the value of an expression at 

some later time.

blocked



Paradigms & conceptsII

4

Divide-and-conquer
Divide a problem, solve subproblems 

and merge solutions

Streams
Efficient handling of continuous 

data processing

1. Divide: Break down a problem into 

smaller subproblems.

2. Conquer: Solve the subproblems 

recursively.

3. Merge: Combine the results into the 

solution.

• Flows of data elements that can be 

continuously and sequentially read from 

or written to.

• Filters: Functions that process data by 

maintaining endpoints to send and 

receive data elements within streams. 

• Pipelines: Multiple filters linked in a 

sequence.



Paradigms & concepts: ApproachesII

5

MPI
• A message-passing specification.

• Facilitates data exchange between processes through cooperative operations.

• Harnesses data parallelism: optimal for embarrassingly parallel problems.

ForkJoin
• A concurrent divide-and-conquer technique.

• Uses fork to divide and join to merge, which are analogous to futures.

• Implements a work-stealing scheduler.

StreamIt
• A programming language purposely designed for efficient stream programming.

• Uses standard stream mechanisms such as filters and pipelines.

• Additionally, it provides splitters, which distribute data from one filter to other two.



FreeST: What is it?III

6

Concurrent

Message-passing
asynchronous communication

Functional

Session types
context-free



FreeST: Session typesIII

7

• Focus on binary (two-party) sessions by well-defined protocols between endpoints.

• Guarantees that all agents involved in a communication strictly follow a protocol, 

ensuring reliable communication.

• Compile-time!

Session Types



FreeST: Session typesIII

7

• Focus on binary (two-party) sessions by well-defined protocols between endpoints.

• Guarantees that all agents involved in a communication strictly follow a protocol, 

ensuring reliable communication.

• Compile-time!

Session Types



FreeST: Essential featuresIII

8

new
create communication 

channels

fork
launch asynchronous

computation

send & receive
… information through 

channels

select & match
… a branch in a 

channel’s protocol



FreeST: ChallengesIII

9

Maturity: FreeST is a new programming language in an early stage of 

development.

Flexibility: It has a limited set of tools, restricting its real-world utility in parallel and 

concurrent scenarios.

Accessibility: Its features and type system might impose difficulties for newcomers 

(e.g., linearity).

FreeST is not simple!

How can we mitigate these challenges?

Three new modules, each providing user-friendly environments and abstractions 

for different parallel and concurrent programming concepts previously discussed.



Parallel module

A parallel and concurrent 

programming environment that 

addresses data parallelism.

Futures module

Implements futures and allows

divide-and-conquer algorithms.

Streams module

Provides a set of abstractions 

suited for stream programming.



Parallel module

A parallel and concurrent 

programming environment that 

addresses data parallelism.



Parallel module: Parallel average exampleIV

10



Parallel module: MotivationIV

11

Repetitive
could benefit from 
some abstraction

Unscalable
not ready to expand 

the workforce

Complex
 simple problem, 

unintuitive implementation



Parallel module: Data exchange patternsIV

12

Distribution

Broadcast Scatter

Gathering

Reduce Gather



Extra

Barrier

Allreduce Allgather

Parallel module: Data exchange patternsIV

13



Parallel module: ImplementationIV

14

WorkerStream WorkerStream WorkerStream WorkerStream

Session types to outline the communication:

ManagerStream ManagerStream ManagerStream ManagerStream

Comm

List of endpoints to communicate with the workers: 

Initialize the manager-workers communication framework:



Parallel module: Revisiting the parallel averageIV

15



Note: The manager selects operations via m prefix; the worker 

matches with w prefix.

Parallel module: Revisiting the parallel averageIV

15



Parallel module: Revisiting the parallel averageIV

15



Futures module

Implements futures and allows

divide-and-conquer algorithms.



Futures: MotivationV

16

How can we retrieve the result of an asynchronous computation?

Could we avoid this hassle? YES!

A mechanism that wraps the fork primitive by abstracting the creation of an extra 

channel, simplifying retrieving the result of an asynchronous computation.

Futures

The fork primitive discards the 

result.

Problem

Create an extra channel to 

exchange the result.

Work-around



Launch an asynchronous computation:

Retrieve the result of the computation:

Futures: ImplementationV

17

Asynchronously delay a computation:



Launch an asynchronous computation:

Retrieve the result of the computation:

Futures: Divide-and-conquerV

18



Futures: Fibonacci sequenceV

19

The Fibonacci sequence defines each number as the sum of the two preceding ones.

Example

𝐹$ = 	0, 𝐹% = 1,

𝐹& = 𝐹&'% + 𝐹&'(

Implementation with futures



Streams module

Provides a set of abstractions 

suited for stream programming.



Example of a stream of integers

Streams: MotivationVI

20

Session types and channels allow for a natural way of writing and 

handling streams in FreeST!

Example of a stream program



Streams: ImplementationVI

21

Session types for streams:

Basic operations on streams:

List related operations on streams:



Streams: Splitters & joinerVI

22

Splitters distribute data from a stream between two streams.
Definition

Divide a stream into two:

Merge two streams into one:



Streams: ExampleVI

23



Evaluation: SurveysVII

24

8.4

9.2
9.6 9.4

7.17

8.33 8.33

0

1

2

3

4

5

6

7

8

9

10

Accessibility Compatibility Relevance

Average results

Parallel Futures Streams

Sample
6 participants 2024  March–June 

Duration

1. Overview

2. Examples

3. Exercise

4. Feedback

Structure

• 1 to 10 evaluation 

concerning several 

parameters.

• Open-ended question.

Feedback



50

56

52

16

20

24

0

10

20

30

40

50

60

ParallelAverage ScalarProduct Monte Carlo

LoC

FreeST Parallel module

Evaluation: Lines of CodeVII

25

We only submit the 

Parallel module to 

this analysis.

Target

LoC comparison between 

examples implemented 

with FreeST and with the 

Parallel module.

Goal



Thank you!

Questions
Answers

R-Q&A


