Ist October 2024

MSc in Software Engineering
Thesis Defense

Improving Parallel and
Concurrent Programming
in FreeST

STUDENT ADVISORS

Guilherme Jodo Correia Lopes Andreia Mordido

Vasco Vasconcelos

- Motivation & overview

Improve FreeST's

practical parallel and concurrent capabilities!

~

-
@

Analysis
Identifying difficulties and
challenges concerning usuadl
parallel and concurrent

@gromming practices. /

4 N

Proposal

Elaboration of tools that address
the identified challenges and

improve the development

-~

-

Development

characteristics.

@erience /

_

of

Integration

tools

modules suited to the language

~

Into

/

n Paradigms & concepts

/

G- .
O — Data parallelism

Addressing embarrassingly

parallel problems
o L

-

Futures

Asynchronous placeholders for

' pending results

U

U

Data is divided into subsets and
processed simultaneously by multiple

Processaors.

An embarrassingly parallel problem
where minimal effort is required to
separate the problem into multiple

parallel tasks.

o /

« The representation of a promise to

deliver the value of an expression at

some later time.

n Paradigms & concepts

4 N 4)
& Divide-and-conquer

Streams
& Divide a gr:gbrfg:éseosl\éleui;:)azroblems Efficientdr:]c:(r;dplirr;% ;);Sci:r?gtinuous
000
1. Divide: Break down a problem into - Flows of data elements that can be
smaller subproblems. continuously and sequentially read from
or written to.
2. Conquer: Solve the subproblems - Filters: Functions that process data by
recursively. mMaintaining endpoints to send and
receive data elements within streams.
3. Merge: Combine the results into the « Pipelines: Multiple filters linked in a

\ solution. / \sequence. /

n Paradigms & concepts: Approaches

.

[MPI]

A message-passing specification.

Facilitates data exchange between processes through cooperative operations.

Harnesses data parallelism: optimal for embarrassingly parallel problems.

/_

j

A concurrent divide-and-conquer technigque.

Uses fork to divide and join to merge, which are analogous to futures.

[ForkJoin]

Implements a work-stealing scheduler.

/_

A programming language purposely designed for efficient stream programming.

Uses standard stream mechanisms such as filters and pipelines.

[Streamit]

Additionally, it provides splitters, which distribute data from one filter to other two.

/_

“ FreeST: What is it?

4 N

A

Functional

_ /
4 N

Message-passing

vsynch oooooooooooo icotioy

_

/

Session types

K context-free

/

n FreeST: Session types

e e . Focus on binary (two-party) sessions by well-defined protocols between endpoints. A

Q « Guarantees that all agents involved in a communication strictly follow a protoco,

ensuring reliable communication.

. AT,
Compile-time!)

Session Types

@ type ClientChannel +{Is0dd: !Int;?Boolean,

type ClientChannel = !Int;?Int Succ : !Int;?Int}
type ServerChannel = ?Int;!Int type ServerChannel = &{Is0dd: ?Int;!Boolean,
Succ : ?Int;!Int}

_

“ FreeST: Session types

4 ee N
ala

Focus on binary (two-party) sessions by well-defined protocols between endpoints.

Guarantees that all agents involved in a communication strictly follow a protocol,

ensuring reliable communication.

Compile-time!

~

J

Session Types

_ /

type ClientChannel
type ServerChannel

\?

'Int;?Int
dualof ClientChannel

ClientChannel

type ClientChannel

type ServerChannel

ServerChannel

+{Is0dd:

'Int;?Boolean,
'Int;?Int}
dualof ClientChannel

Client Q

Server

“ FreeST: Essential features

o

17

o

new
create communication
channels

send & receive

.. iInformation through
channels

J

4)
’ fork
launch asynchronous
computation
- /
4)
select & match
.. abranchina
channel’'s protocol
- /

n FreeST: Challenges

FreeST is not simple!
4 A
Maturity: FreeST is a new programming language in an early stage of

development.

_ J

4 ™
Accessibility: Its features and type system might impose difficulties for newcomers
(e.g, linearity).

_ J

4 A
Flexibility: It has a limited set of tools, restricting its real-world utility in parallel and
concurrent scenarios.

- J

How can we mitigate these challenges?

4 A
Three new modules, each providing user-friendly environments and abstractions

for different parallel and concurrent programming concepts previously discussed.
\- J

Parallel module

A parallel and concurrent

programming environment that

@jresses data parallelism. /

Futures module

_

Implements futures and allows

divide-and-conquer algorithms.

-~

/

_

Streams module

~

Provides a set of abstractions

suited for stream programming.

/

Parallel module

A parallel and concurrent

programming environment that

@jresses data parallelism. /

Futures module

Implements futures and allows

divide-and-conquer algorithms.

4 N

Streams module

Provides a set of abstractions

suited for stream programming.

_ /

_ /

\AR Parallel module: Parallel average example

- - - type ParallelStream = ![Int];?Int;Wait
&3 €3 &3

process : dualof ParallelStream -> ()
process ¢ = let (xs, c) = receive ¢ 1in
c |> send (sum xs) |> close

parallelAverage : [Int] -> ParallelStream -> ParallelStream
1-> ParallelStream 1-> Int

parallelAverage xs wl w2 w3 =

let (xs, ys) = splitAt 3 xs in

let (ys, zs) = splitAt 3 ys in

1
>

| Send first sublist N
I I
, Send second sublist
| |

|_Send third sublist let wl = send xs wl in
I let w2 = send ys w2 in
let w3 = send zs w3 in

L sumeveconiepscitesubist AT

| let (x2, w2) = receive w2 1in
Send the result | let (x3, w3) = receive w3 in
wailt wl; wait w2; wait w3;

NI 4

—_— X

Send the flesult

Eendtheresult back (x1 + x2 + x3) / 9

= AT AT K

main : Int

main =|let wl = forkWith process in

let w2 = forkWith process in

let w3 = forkWith process 1in
parallelAverage[1,2,4,8,16,32,64,128,256] wl w2 w3

Parallel module: Motivation

Repetitive
could benefit from
some abstraction

Unscalable

J
~

0
0 0
I not ready to expand
. = the workforce
-
/

2r19, Complex

simple problem,
- JI _unintuitive implementation

- J

type ParallelStream = ![Int];?Int;Wait

process : dualof ParallelStream -> ()
process ¢ = let (xs, c) = receive ¢ 1in
c |> send (sum xs) |> close

parallelAverage : [Int] -> ParallelStream -> ParallelStream
1-> ParallelStream 1-> Int
parallelAverage xs|{wl w2 w3 |=
let (xs, ys) = splitAt 3 xs in
let (ys, zs) = splitAt 3 ys in

let wl = send xs wl in
let w2 = send ys w2 in
let w3 send zs w3 1in

let (x1, wl) = receive wl in
let (x2, w2) = receive w2 1n
let (x3, w3) = receive w3 in
walt wl; watt w2; wait w3;

(x1 + X2 + x3) / 9

main : Int

main =|let wl = forkWith process in

let w2 = forkWith process 1in

let w3 = forkWith process in
parallelAverage[l,2,4,8,16,32,64,128,256] (wl w2 w3

11

Parallel module: Data exchange patterns

/ Broadcast Scatter \

[Distribution

[Gathering

15

K Reduce

Parallel module: Data exchange patterns

/ Allreduce
@ & O
[sum

[Extra J @
2 (3)
_/

Allgather
[]

Barrier

; /
13

Parallel module: Implementation

Session types to outline the communication:

type ManagerStream = +{ Broadcast: ![Int]

, Scatter : ![Int]

, Gather : ?7[Int]

, Reduce : ?7Int

, Done : Wait} ; ManagerStream

type WorkerStream = dualof ManagerStream

List of endpoints to communicate with the workers:

data Comm = WNil () | Worker ManagerStream Comm

Initialize the manager-workers communication framework:

initialize : (Comm -> a) -> (WorkerStream -> ())
-> Int -> a

Comm

ManagerStream

'
@

l Y

ManagerStream

ManagerStream

0%

ManagerStream

@

14

\YAR Parallel module: Revisiting the parallel average

- - - type ParallelStream = ![Int];?Int;Wait
€3 €3 &3

process : dualof ParallelStream -> ()
process ¢ = let (xs, c) = receive c 1in
c |> send (sum xs) |> close

parallelAverage : [Int] -> ParallelStream -> ParallelStream
1-> ParallelStream 1-> Int
parallelAverage xs wl w2 w3 =
let (xs, ys) = splitAt 3 xs in
let (ys, zs) = splitAt 3 ys in

Send first sublist

) Send second sublist
| |

- 4

| !Sendthird sublist 1 let wl = send xs wl 1in
| let w2 = send ys w2 in
let w3 = send zs w3 in

L smeveconuotmessist | S R——

| let (x2, w2) = receive w2 1in
Send the result I let (x3, w3) = receive w3 1n
walt wl; wait w2; wait w3;

—_— X

=

Send the fesult

e\

gend the result back (x1 + x2 + x3) / 9

A

main : Int

main = let wl = forkWith process in
let w2 = forkWith process 1in
let w3 = forkWith process 1in
parallelAverage[l,2,4,8,16,32,64,128,256] wl w2 w3

\YAR Parallel module: Revisiting the parallel average

" om om

import Parallel

worker : WorkerStream -> ()
worker ¢ =|let (xs, c¢) = wscatter ¢ in
C |> wreduce (sum xs) |> wdone

| Send first sublist N
I I
, Send second sublist
| |

1
>

manager : [Int] -> Comm -> Int
| Send third sublist manager xs comm = let xsl = length xs in
; let comm = mscatter xs comm in
let (xs, comm) = mreduce (+) 0 comm in

Send the result |

NI 4

—_— X

main : Int
main = let xs = [1, 2, 4, 8, 16, 32, 64, 128, 256] in
initialize (manager xs) worker 3

Send the flesult

Eend the result back

Note: The manager selects operations via m prefix; the worker

— TA T AT K

matches with w prefix.

Parallel module: Revisiting the parallel average

" om om

1
|
I
|
| nfoldl : Int -> (Int -> Int -> Int) -> Int -> [Int] -> Int
I nfilter : Int -> (Int -> Bool) -> [Int] -> [Int]

. nzipWith : Int -> (Int -> Int -> Int) -> [Int] -> [Int] -> [Int]

Send first sublist

»~

Send second sublist

- 4

|
| Send third sublist

|
|
I ; S
|
|

Y.

L smevecowsuotnessin nport_Parallel

I
L Send the result |

main : Int
main = let xs = [1, 2, 4, 8, 16, 32, 64, 128, 256] in
nfoldl 3 (+) 0@ xs / length xs

| Send the fesult

b

4

b

| Lend the result back
I

Parallel module

A parallel and concurrent

programming environment that

&ddresses data parallelism. /

Futures module

Implements futures and allows

divide-and-conquer algorithms.

4 N

Streams module

Provides a set of abstractions

suited for stream programming.

_ /

_ /

Futures: Motivation

How can we retrieve the result of an asynchronous computation?

Problem] \ Work-around } \
The fork primitive discards the Create an extra channel to
result. | > exchange the result.

o O 0 © o0

Could we avoid this hassle? YES!

/.[Futures }

A mechanism that wraps the fork primitive by albstracting the creation of an extra

~N

channel, simplifying retrieving the result of an asynchronous computation.
_ J

Futures: Implementation

Launch an asynchronous computation:

future : (() -> a) -> ?a;Wait

Retrieve the result of the computation:

block : ?a;Wait -> a

Asynchronously delay a computation:

delay : (() -> a) -> (() -> b)
-> 7b;Watt

17

Futures: Divide-and-conquer

Launch an asynchronous computation:

future : (() -> a) -> ?a;Wait

Retrieve the result of the computation:

block : ?a;Wait -> a

'a;Close

la;Close

'a;Close

'a;Close

'a;Close

'a;Close

18

Futures: Fibonacci sequence

Example

The Fibonacci sequence defines each number as the sum of the two preceding ones.]

()

[Implementation with futures]

pFib : Int -> Int

pFitb n | n == 0 = 0
| n == 1 =1
| otherwise = let f1l = future (_:() -> pFib (n - 1)) in

let f2 = future (_:() -> pFib (n - 2)) 1in
block f1 + block f2

Parallel module

A parallel and concurrent

programming environment that

&ddresses data parallelism. /

Futures module

Implements futures and allows

divide-and-conquer algorithms.

4 N

Streams module

Provides a set of abstractions

suited for stream programming.

_ /

_ /

Streams: Motivation

-

Session types and channels allow for a natural way of writing and

handling streams in FreeST!

~

intSource

[Example of a stream of integers]

type IntStream = +{More: !Int;IntStream, Done: Wait} <::>hmwmam

[Example of a stream program]

main : ()
main = let (w, r) = new @IntStream () 1in
fork (_:() -> intSource w);

intPrinter r , ,
INtPrinter

dual
IntStream

20

Streams: Implementation

Session types for streams:

type 0Stream
type IStream

dualof OStream

Basic operations on streams:

sendS :
wailt$sS

Int -> 0Stream -> 0Stream

: OStream -> ()
forward :

IStream -> 0Stream 1-> 0Stream

List related operations on streams:

fromList
toList :

[Int] -> 0Stream -> ()
IStream -> [Int]

+{More: !Int;0Stream, Done:

Wait}

filterq

Q OStream

‘ IStream

filters

2]

Streams: Splitters & joiner

Splitters distribute data from a stream between two streams.]

Definition

Divide a stream into two;

splitSDup :

spLitSALt :

splitSwit

IStream -> 0Stream 1-> OStream 1-> ()
IStream -> 0Stream 1-> 0Stream 1-> ()

h : (Int -> Bool) -> IStream -> 0Stream
1-> 0Stream 1-> ()

Merge two streams into one:

joiner :

IStream -> IStream 1-> 0OStream 1-> ()

filterq

OStream

IStream

splitter

OStream OStream

IStream IStream

joiner

OStream

IStream

fz'lterz

22

Streams: Example

OStream

IStream

fromUList

OStream

split SWith

IStream

OStream

IStream

foldlS foldlS

mapS : (Int -> Int) -> IStream -> OStream 1-> ()
filterS : (Int -> Bool) -> IStream -> OStream 1-> ()
foldlS : (Int -> Int -> Int) -> Int -> IStream -> Int

Oy
S
N

import Streams

foo : [Int] -> (Int, Int)

foo xs = let 11 = forkWith|(fromList xs)| in
let (12, 13) = forkWith2|(splitSWith even 11)| in
(foldlS (+) 0 12, foldlS (+) 0O i3)

malin : (Int.: INL)
main = foo [1, 6, 23, 82, 34, 2, 5, 44, 302, 48, 17, 3]

23

VII

Evaluation: Surveys

Sample

6 participants

Duration
[2024 March—-June J

|Feedback|

« 1 to 10 evaluation
concerning several

parameters.

Structure
1. Overview
2. Examples
3. Exercise
4. Feedback
_ J

« Open-ended guestion.
__P q /

10

©

(00]

~

(0))

o1

w

N

—

9.6

9.2 94
8.4 8.33 8.33
I | I I

Accessibility

Average results

Compaitibility

B Parallel M Futures M Streams

Relevance

24

VII

Evaluation: Lines of Code

f_[Target]_\

We only submit the

Parallel module to

\thIS analysis. y

/_[Goal]_\

LoC comparison between

examples implemented
with FreeST and with the

Q’orollel module.)

60

50

40

30

20

10

50

16

ParallelAverage

LoC

56

20

ScalarProduct

M FreeST M Parallel module

52

24

Monte Carlo

25

Thank youl!

Questions
R-Q&A

Answers

