Programming with T; U

Bernardo Almeida. Diogo Barros, Diana Costa, Alcides Fonseca, Guilherme
Lopes, Paula Lopes, Andreia Mordido, Diogo Pocas, Miguel Roldao, Joao
Roque, Afonso Rosa, Gil Silva, Antonio Silvestre, Peter Thiemann, Vasco T,

Vasconcelos,
University of Lisbon, University of Frelburg

PL@LX, Técnico, Lisbon, June 3, 2024

back to the classics

Types for Dyadic Interaction

Kohei Honda

kohei@md.cs.keio.ac.jp

Department of Computer Science, Keio University
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223, Japan

Abstract

We formulate a typed formalism for concurrency where types denote freely composable structure of dyadic inter-
action in the symmetric scheme. The resulting calculus is a typed reconstruction of name passing process calculi.
Systems with both the explicit and implicit typing disciplines, where types form a simple hierarchy of types, are
presented, which are proved to be in accordance with each other. A typed variant of bisimilarity is formulated and
it is shown that typed (-equality has a clean embedding in the bisimilarity. Name reference structure induced by
the simple hierarchy of types is studied, which fully characterises the typable terms in the set of untyped terms.
It turns out that the name reference structure results in the deadlock-free property for a subset of terms with a
certain regular structure, showing behavioural significance of the simple type discipline.

Concur 1993

the elements of dyadic
INnteraction

4l T

(input a value) (output a value)

Wait Close

(wait for close) (close channel)

va.l 3q.1

(input a type) (output a type)

T&U TeU

(offer choice of T (select from T or
or U) U)

&{l’]: T1, cee, |n2 Tn} @{l’l: T1, cee, |n: Tn}

(labelled offer) (labelled selection)

T:U Skip

(sequential

composition) (identity)

ua.l a

(recursion) (self reference)

duality

Dual (?T) IT
Dual (IT) 7T
Dual Wait Close
Dual Close Wait

Dual (&{l: T, m: U})

@{l: Dual T, m: Dual U}

Dual (&{l: T, m: U})

&{l: Dual T, m: Dual U}

Dual (T ; U)

Dual T ; Dual U

Dual Skip

Skip

the freest programming language

 Functional (system F)

- Concurrent

 Call-by-value

- Message-passing on bidirectional, heterogeneous channels
- Buffered channels (asynchronous message passing)

« Linear and shared (unrestricted) channels

- Channel behaviour (protocol) described by types

Nnfinite streams

type IRepeat a = a ; IRepeat a

type IStream a = IRepeat (!a) -- seen from the writer
type ColIStream a = Dual (IStream a) -- seen from the reader
-- = IRepeat (?a)

-- A consumer for type ColIStream a
echo : CoIStream a -> Diverge
echo c =
let (x, c) = receive c in print x ; echo c

-- A consumer for type IStream Int

ints : Int -> IStream Int -> Diverge

ints n ¢ = ints (n + 1) (send n c)
= let ¢ = send n ¢ in ints (n + 1) ¢ -- alternative
=c |>send n |[> ints (n + 1) -- preferred

running

echo : Dual (IStream a) -> Diverge

ints : Int -> IStream Int -> Diverge

main : Diverge $ freest iStream.fst
main = 0

forkWith (ints 0) 1

| > Y

echo 3

more infinite streams

type Serve a b = IRepeat (!'a ; 7b)

-- 4 consumer for type Dual (Serve Int Bool)
gzServer : Dual (Serve Int Bool) -> Diverge
gzsServer c =

let (n, c) = receive c in

c |> send (n > 0) |> gzServer

finite and infinite streams

type Repeat a = +{ More: a ; Stream, Done: Skip }
type Stream a = Repeat (!a)

foldl : ?(b -> a ->b) ; ?b ; Dual (Stream a) ; !b ; Wait -> ()
foldl r =
let (£, r) receive r in
let (e, r) = receive r in
let (x, r) fldl f e r in
r |> send x
|> wait
where
f1dl : (b -> a ->b) -> b -> Dual (Stream a) ; ¢ -> (b, c)
fl1dl _ x (Done r) = (x, r)
fldl £ x (More r) = let (y, r) = receive r in fldl f (f x y) r

sharing

Nnterference

£ & O =0
+ =

print "Hello " ;

print "FreeST"

S freest 1o0.fst

main : () Hello
main = Hello

fork f ; FreeST

£ 0 FreeST

*2T *IT

~ 2T 72T : ... ~ IT:17

(forever input a (forever output a
value) value)

*&{l1, ..., In} *ofly, ..., In}

~&{h: &{h. .} ..., ~&il:eth . }...,
In: &{l1. .} In: @l ..}}

(forever offera @ (forever select
set of labels) from a set)

stdout s of a star type

type StdOutSession = +{ PutChar : !Char ; StdOutSession

, PutStr : !String ; StdOutSession
, PutStrLn: !String ; StdOutSession
, Done : Close

}

type StdOut : *7Std0OutSession

stdout : StdOut

-- Recewve a wvalue from a star channel
-- Session wnitiation on the reader side
receive_ : *7a -> a

receive_ ¢ = ¢ |> receive |> fst

controlling interference

g o L) 50
g =
receive_ stdout
|> select PutStr |> send "Hello "
|> select PutStrLn |> send "FreeST"

|> select Close |> close
main. & Q)
main =
fork g ; $ freest io.fst

g O Hello FreeST

Hello FreeST

https://freest-lang.github.1o/

OE=I0

freest 3.2 in numbers

First git commit 20/11/2017
Commits 3557
Contributors 12
LOC (Haskell, Happy, Alex, Freest) 5741
Manual tests 1046
LOC (manual tests) 9773

Quickcheck for Type equivalence
Support for Studio Code, Emacs
Runs on Linux, MacOS, Windows
Theses 1 PhD (ongoing), 8+ MsC

[reest biography

First-order messages, Damas-Milner type system Nov 2017 1.0.0
Impredicative polymorphism (System F) Fev 2021 2.0.0
Higher-order messages Apr 2023 3.0.0
Pattern matching Apr 2023 3.0.0
Shared channels Apr 2023 3.0.0
Channel closing Nov 2023 3.1.0
Kind inference Apr 2024 3.2.0
Subtyping 2024
Local type inference 2024
Send/receive types 2024/2025
Type operators 2024/2025

the technical challenge ...

. 1s type equivalence

type equivalence

- Determined by a bisimulation game between two types, T and U:
« T must simulate U
« Umust simulate T

- Or else by a coinductive system of rules

laws of sequential composition

(T;U);V ~T;(U;V)

Associativity

T;Skip ~ Skip; T ~ T

Skip is identity

+Hl: T, m:U};V ~+{l: T;Vm:U; V}

Right distributivity

Close; T ~ Close

Close is left zero (same for Wait)

(Ma.T;a);U ~ pa.T; a

Unnormed types are left absorbing

deciding type equivalence

1. Transform the two types into two words of a simple grammar

- Simple grammars are deterministic context-free grammars in Greibach normal form
2. Run a bisimulation algorithm on simple grammars

- Currently: a doubly-exponential algorithm

- Coming soon: single-exponential algorithm

— [H
¥ Fw Fw % As in TAPL

finite-state i b - % Regular ST
automata w “
. l J Context-free ST
simple p ot [N
grammarsF i —— i 7 > deterministic
pushdown automata
No type Type ops w/ Type ops w/
operators «-kinded arbitrary recursion
recursion

freest 50

what shall be FreeST 507

- A complete reimplementation, incorporating

- A new AST much closer to the source language, better suited for inference, error message
issuing, and back-ends

- Type operators
- Support for receive/send types

- A new algorithm to decide bisimulation

would like to contripbute?

- We have just started implementing 5.0
- Thereisalottodo

- Language design

- Implementation

- Developing in FreeST

- We are planning a paper on a major conference

coming soon to a]qqokstore near you

4

@ caMBRIDGEWY 7 Y\ N\ 2N //
TR R A 4R /7% AR

AN : | Vhpk
. .ff g A \ "ll //

!
jéﬁ Session Types

Simon J. Gay
> Vasco T. Vasconcelos

https://freest-lang.github.1o/

OE=I0

