
PL@LX, Técnico, Lisbon, June 3, 2024

Bernardo Almeida, Diogo Barros, Diana Costa, Alcides Fonseca, Guilherme
Lopes, Paula Lopes, Andreia Mordido, Diogo Poças, Miguel Roldão, João
Roque, Afonso Rosa, Gil Silva, António Silvestre, Peter Thiemann, Vasco T.
Vasconcelos,
University of Lisbon, University of Freiburg

Programming with T ; U

back to the classics

Concur 1993

the elements of dyadic
interaction

?T !T

(input a value) (output a value)

Wait Close

(wait for close) (close channel)

∀a.T ∃a.T

(input a type) (output a type)

T&U T⊕U

(offer choice of T
or U)

(select from T or
U)

&{l1: T1, …, ln: Tn} ⊕{l1: T1, …, ln: Tn}

(labelled offer) (labelled selection)

T ; U Skip

(sequential
composition) (identity)

μa.T a

(recursion) (self reference)

duality

Dual (?T) !T

Dual (!T) ?T

Dual Wait Close

Dual Close Wait

Dual (&{l: T, m: U}) ⊕{l: Dual T, m: Dual U}

Dual (⊕{l: T, m: U}) &{l: Dual T, m: Dual U}

Dual (T ; U) Dual T ; Dual U

Dual Skip Skip

the freest programming language

• Functional (system F)

• Concurrent

• Call-by-value

• Message-passing on bidirectional, heterogeneous channels

• Buffered channels (asynchronous message passing)

• Linear and shared (unrestricted) channels

• Channel behaviour (protocol) described by types

infinite streams

running

more infinite streams

finite and infinite streams

sharing

interference

*?T *!T

~ ?T ; ?T ; … ~ !T ; !T ; …

(forever input a
value)

(forever output a
value)

*&{l1, …, ln} *⊕{l1, …, ln}

~ &{l1: &{l1: …} …,
 ln: &{l1: …}}

~ ⊕{l1: ⊕{l1: …} …,
 ln: ⊕{l1: …}}

(forever offer a
set of labels)

(forever select
from a set)

stdout is of a star type

controlling interference

https://freest-lang.github.io/

freest 3.2 in numbers

First git commit 20/11/2017

Commits 3557

Contributors 12

LOC (Haskell, Happy, Alex, Freest) 5741

Manual tests 1046

LOC (manual tests) 9773

Quickcheck for Type equivalence

Support for Studio Code, Emacs

Runs on Linux, MacOS, Windows

Theses 1 PhD (ongoing), 8+ MsC

freest biography
First-order messages, Damas-Milner type system Nov 2017 1.0.0

Impredicative polymorphism (System F) Fev 2021 2.0.0

Higher-order messages Apr 2023 3.0.0

Pattern matching Apr 2023 3.0.0

Shared channels Apr 2023 3.0.0

Channel closing Nov 2023 3.1.0

Kind inference Apr 2024 3.2.0

Subtyping 2024

Local type inference 2024

Send/receive types 2024/2025

Type operators 2024/2025

the technical challenge …

… is type equivalence

type equivalence

• Determined by a bisimulation game between two types, T and U:

• T must simulate U

• U must simulate T

• Or else by a coinductive system of rules

laws of sequential composition

(T ; U) ; V ~ T ; (U; V) Associativity

T ; Skip ~ Skip ; T ~ T Skip is identity

+{l: T, m: U} ; V ~ +{l: T ; V, m: U ; V} Right distributivity

Close ; T ~ Close Close is left zero (same for Wait)

(μa. T ; a) ; U ~ μa. T ; a Unnormed types are left absorbing

deciding type equivalence

1. Transform the two types into two words of a simple grammar

• Simple grammars are deterministic context-free grammars in Greibach normal form

2. Run a bisimulation algorithm on simple grammars

• Currently: a doubly-exponential algorithm

• Coming soon: single-exponential algorithm

As in TAPL

Regular ST

Context-free ST

No type
operators

Type ops w/
∗-kinded
recursion

Type ops w/
arbitrary recursion

freest 5.0

what shall be FreeST 5.0?

• A complete reimplementation, incorporating

• A new AST much closer to the source language, better suited for inference, error message
issuing, and back-ends

• Type operators

• Support for receive/send types

• A new algorithm to decide bisimulation

would like to contribute?

• We have just started implementing 5.0

• There is a lot to do

• Language design

• Implementation

• Developing in FreeST

• We are planning a paper on a major conference

Session Types
Simon J. Gay
Vasco T. Vasconcelos

only for testing, do not print

coming soon to a bookstore near you

https://freest-lang.github.io/

