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Resumo

Os tipos de sessão [51, 52, 94] permitem a especificação de protocolos de comunicação em

canais bidirecionais e heterogéneos. Tipicamente, estas especificações incluem o tipo, direção e

ordem das mensagens, bem como pontos de ramificação onde os participantes podem escolher

como deve prosseguir a comunicação.

Ao suportar tipos de sessão, as linguagens de programação conseguem oferecer mais segu-

rança na programação concorrente, permitindo ao seu verificador de tipos assegurar a fidelidade

das sessões (i.e., que a comunicação procede de acordo com o protocolo), a privacidade (i.e., que

os canais de comunicação são conhecidos apenas pelos participantes) e a integridade da comuni-

cação (i.e., que não há incompatibilidades resultantes da ordem e tipos das mensagens). Em certas

formulações, também é possível assegurar que a comunicação nunca chega a um impasse [53].

Até recentemente, os tipos de sessão apenas permitiam a recursão terminal, e estavam, por-

tanto, limitados à especificação de protocolos correspondentes a linguagens regulares (em parti-

cular, à união das linguagens regulares e ω-regulares). Esta classe de linguagens exclui muitos

protocolos de interesse prático, sendo o exemplo mais típico a serialização de dados com estrutura

de árvore num só canal. Os tipos de sessão livres de contexto, propostos por Thiemann e Vascon-

celos [96], libertam os tipos de sessão desta restrição, permitindo a recursão não-terminal através

de um operador de composição sequencial que forma um monóide com o elemento neutro Skip

(um tipo que representa o protocolo vazio, i.e., sem ação). Tal como o nome indica, os tipos de

sessão livres de contexto conseguem especificar protocolos correspondentes a linguagens livres de

contexto (determinísticas e simples [62]), e são portanto consideravelmente mais expressivos que

os tipos de sessão convencionais.

Na sua busca pela fiabilidade, os tipos de sessão podem tornar a programação demasiado rígida

para os programadores. A subtipagem, um aspeto central de muitos sistemas de tipos, procura

aliviar a tensão entre a fiabilidade e a flexibilidade. É tipicamente justificada por um apelo ao

princípio da substituição segura de Liskov [65]: um tipo T é considerado subtipo de U se um

valor do tipo T puder ser usado no lugar de um valor do tipo U em qualquer contexto, sem violar

as propriedades desejáveis do sistema de tipos em questão.

O que significa dizer que um tipo de sessão livre de contexto é subtipo de outro? Uma possível

resposta, seguindo o princípio de Liskov, pode ser encontrada no influente trabalho de Gay e Hole

[42] sobre os tipos de sessão regulares: um tipo de sessão S é subtipo de R se um canal governado

pelo tipo S puder ser usado em qualquer contexto onde é esperado um canal governado pelo tipo
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R. De forma mais concreta, a subtipagem para tipos de sessão permite uma maior flexibilidade

nos tipos das mensagens trocadas e nas escolhas oferecidas aos participantes, sem comprometer

as garantias mencionadas acima. Na prática, esta flexibilidade promove a modularidade no desen-

volvimento de software concorrente: o protocolo de um participante pode ser refinado, mantendo

intacto o do seu correspondente.

Enquanto que propriedades algorítmicas da subtipagem para os tipos de sessão regulares são

bem conhecidas (graças também ao trabalho de Gay e Hole), o mesmo não pode ser dito sobre os

os tipos de sessão livres de contexto. Os maiores desafios neste sentido são as suas propriedades

algébricas (identidade, associatividade, distributividade e absorção), a sua interpretação equirecur-

siva e a possibilidade de recursão não-terminal. A investigação de Padovani [82] sobre este tópico

mostrou que o problema da subtipagem para estes tipos, quando formulado segundo os princípios

clássicos de Gay e Hole, é indecidível—o preço habitual a pagar por mais expressividade.

Apesar destes desafios, propomos duas abordagens à subtipagem para os tipos de sessão li-

vres de contexto: uma sintática e baseada em regras de inferência, e outra semântica e apoiada

numa nova noção de pré-ordem observacional a que chamamos de simulação-XYZW , uma ge-

neralização da noção de simulação-XY proposta por Aarts e Vaandrager [1]. Esta relação permite

uma combinação seletiva dos requisitos da simulação simples, simulação inversa e de uma certa

forma de contra-simulação, o que lhe permite suportar a habitual covariância e contravariância

dos construtores de tipos de sessão na sua plenitude (em contraste, a relação proposta por Padovani

não permite qualquer variância nos tipos das mensagens).

A equivalência dos tipos de sessão livres de contexto é baseada na noção de bissimulação [83],

a qual a simulação-XYZW generaliza. Tirando partido deste facto, derivamos um algoritmo de

subtipagem a partir de um algoritmo de equivalência já existente [5]. O nosso algoritmo é correto

(i.e., as suas respostas afirmativas são verdadeiras) mas, devido à indecidibilidade do problema,

necessariamente incompleto.

Este algoritmo foi implementado no verificador de tipos da linguagem FREEST [2, 4, 95],

uma linguagem de programação funcional com suporte para tipos de sessão livres de contexto. De

forma a avaliar a sua performance, construímos um conjunto de 4000 testes, gerados automati-

camente com a ajuda da biblioteca Quickcheck para a linguagem Haskell [22]. Obtivémos uma

performance satisfatória, observando apenas 200 timeouts. Para uma avaliação mais realista, e

de forma a comparar a nossa adaptação com o algoritmo original, corremos ambos os algoritmos

lado-a-lado num conjunto de 288 programas FREEST sem subtipagem. Nesta avaliação não ob-

servamos diferenças significativas de performance, o que sugere que a aplicação prática do nosso

algoritmo é viável.

O trabalho desenvolvido no âmbito desta tese foi apresentado na 34ª Conferência Internacional

de Teoria da Concorrência (CONCUR 2023) e no INForum 2023, Simpósio de Informática, e

publicado nas atas correspondentes sob a forma de artigo [90] e resumo [92], respetivamente.

Palavras-chave: Tipos de sessão, Subtipagem, Simulação, Recursão não-terminal, Gramáticas

simples
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Abstract

Session types allow the specification of structured communication protocols on bidirectional,

heterogeneously typed channels. Typically, these specifications include the type, direction and

order of messages, as well as branching points where participants can choose how communica-

tion should proceed. By supporting session types, programming languages are able to offer safer

concurrency, ensuring session fidelity, privacy and communication safety. Until recently, session

types were restricted to the description of regular, tail-recursive protocols, considerably limiting

their expressiveness. Context-free session types liberate themselves from this restriction by in-

troducing a monoidal type operator to express the sequential composition of any two protocols,

making them significantly more expressive.

However, in their quest for safe concurrency, session types can make programming too rigid.

Subtyping, an important feature of many type systems, is meant to alleviate this tension between

safety and flexibility. While the algorithmic properties of subtyping for regular session types

are by now well known, the same cannot be said for their context-free counterparts. The main

challenges in this respect are the algebraic properties they exhibit, along with their equirecursive

interpretation. A previous investigation into this topic by Padovani has shown this problem to be

undecidable—the usual, unfortunate price to pay for expressive power.

Despite these challenges, we propose two novel approaches to subtyping for context-free ses-

sion types: one syntactic and based on inference rules, and another semantic and based on a novel

kind of observational preorder we call XYZW-simulation, which generalizes XY-simulation

and therefore also bisimulation, on which type equivalence for context-free session types is of-

ten based. We take advantage of this fact to derive a sound (but, due to the undecidability of

the problem, necessarily incomplete) subtyping algorithm from an existing type equivalence algo-

rithm. We then present an empirical evaluation of its performance in the context of a programming

language compiler.

Keywords: Session types, Subtyping, Simulation, Non-tail recursion, Simple grammars
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Chapter 1

Introduction

Communication and concurrency are increasingly important aspects of software systems. Whereas

in the past computers, heavy and expensive, acted as centralized units for storing, processing

and retrieving data, they have now miniaturized, multiplied and arranged themselves into vast

distributed networks, forming the backbone of transportation, banking and telecommunications

systems. Their performance has also increased significantly, in no small part due to the parallel

processing techniques enabled by the advent of the multi-core processor.

Building safe, high-quality software in this scenario is no easy task, and failure can be costly.

On the one hand, designers must carefully consider how system components should coordinate,

identifying communication structures and formalizing them in protocols. On the other hand, pro-

grammers must also take care to implement these protocols correctly.

Types

As systems grow in size and complexity, programs become harder to reason about, verify and

maintain. We cannot rely on developers’ judgments alone—automatic and reliable software ver-

ification tools are necessary. Of all software verification tools, type systems are by far the most

accessible. Being an integral part of most programming language compilers, they ensure pro-

grams are (to some extent) correct even before they are executed. The information they provide

can also be used by code editors to guide the development process with immediate feedback and

suggestions about programs as they are being written.

A type can be understood as the interface that a software component (e.g. a function, a record,

an object, etc.) presents to the outside, an approximation of its run-time behavior and constraints.

By assigning types to software components, type systems are able to verify their correct composi-

tion by identifying and rejecting invalid operations on these interfaces (e.g. supplying an integer

to a function expecting a string, invoking a method on an object does not offer it, etc.). In short,

type systems ensure programs have computational meaning, or, as famously put by Robin Milner,

that they do not “go wrong”[70]. When made explicit through type signatures, types are also a

useful tool for abstraction and documentation: developers can gather hints about the behavior and

constraints of a software component by simply looking at its declared type.
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Chapter 1. Introduction 2

Subtyping

To be usable, type systems must be flexible. When piecing together software components, pro-

grammers do not need their interfaces to match exactly—they only need them to be compatible.

In other words, a component should be able to take on a type simpler than its own if the context so

requires, provided that this substitution does not break the guarantees offered by the type system.

This is the guiding principle of subtyping, a standard feature of type systems that can be found in

many modern typed programming languages. Subtyping is typically demonstrated using records

(in functional languages) or objects (in object-oriented programming). Consider, for example,

types Person = {name:String, age: Int} and Student = {name:String, age: Int, gpa:Float}.1 If

we ignore the gpa field, any value of type Student can be used as if it had type Person. In this

case, Student is said to be a subtype of Person, and Person a supertype of Student2. The inverse

is not true, however: accessing the gpa field on Person would result in a run-time error.

Session types

Traditional type systems are concerned with data, its structure, and the valid operations that may

be performed on it. Most modern typed programming languages provide some mechanism to

describe structured data and enforce its correct manipulation using types (e.g. structs in C and

Go, enums in Rust and Scala, data types in Haskell, etc.). But as computation grows increasingly

concurrent, programs must do more than just process data—they must exchange it among inde-

pendent, concurrent processes, each with its own concerns. Programmers, then, need an analogous

mechanism to describe and enforce structured communication patterns.

Session types, introduced by Honda et al. [51, 52, 94], allow just this. They enhance traditional

type systems with the ability to specify and enforce communication protocols on bidirectional, het-

erogeneously typed channels. Typically, protocol specifications include the type, direction (input

or output) and order of the messages, as well as branching points where participants can choose

how communication should proceed. These specifications may also be recursive, allowing for

repeated, potentially infinite communication behavior (typically seen in servers, streams, etc.).

Context-free session types

Classical session types are somewhat restricted in terms of the protocols they allow. They are

limited to what is known as tail recursion: protocols may recur, but only in their last step. In

formal language terms, classical session types are restrained to the description of protocols that

correspond to the class of regular languages (earning them the regular epithet). As it turns out,

this restraint excludes many protocols of practical interest, with the quintessential example being

the serialization of tree-structured data (e.g. binary trees, JSON, etc.) on a single channel.

1These types could be interpreted as either records (e.g., as in OCaml) or objects (e.g., as in TypeScript). We are
deliberately ambiguous here, as the point applies to both.

2Notice the parallel between subtyping and hyponymy: the noun “student” is a hyponym of “person”.
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Context-free session types, proposed by Thiemann and Vasconcelos [96], liberate protocols

from tail recursion by allowing them to be sequentially composed in an arbitrary manner and

enabling them to recur at any point. As their name hints, they can express protocols that correspond

to the class of (simple, deterministic) context-free languages, which properly contains regular

languages. They are thus considerably more expressive than their classical, regular counterparts.

Subtyping context-free session types

When applied to session types, subtyping allows increased flexibility in the interactions between

participants, namely on the type of the messages and on the choices available at branching points,

allowing communication channels to be governed by simpler session types if their context so

requires. Subtyping for regular session types has been formalized, shown decidable and given an

algorithm by Gay and Hole [42].

While not fundamentally different, subtyping for context-free session types has until now only

been considered briefly, and in a limited form, by Padovani [82]. This existing notion allows

variance in choices, but not in the type of messages—a crucial feature of Gay and Hole’s notion

(and indeed of subtyping for channel types in general [85]). Even if limited, this formulation

suffices to for Padovani to show that subtyping for context-free session types is undecidable—the

usual, unfortunate price to pay for expressive power. Despite this negative result, our goal for this

thesis is to propose and implement a more expressive notion of subtyping, in which both choices

and input/output may vary according to the principles put forth by Gay and Hole.

While initially formulated in the context of the π-calculus, considerable work has been done to

integrate session types in more standard settings, such as functional languages based on the linear

polymorphic λ-calculus [2, 23, 86]. With this in mind, we develop our theory in a linear functional

setting, showing how subtyping for records, variants and (linear and unrestricted [39]) functions

can be seamlessly integrated with subtyping for context-free session types.

As customary, we begin by defining our notion of subtyping by means of a preorder relation,

defined by a set of inference rules that analyze and decompose the syntactic structure of types to

determine the relationship between them. Finding this relation to be unsuitable for algorithmic

treatment, we turn our attention away from the structure of types to focus on the communication

behaviors they describe, which are easily modeled by labeled transition systems and compared

using an appropriate notion of simulation preorder. Here we find that, while subtyping in choices

can be captured by the XY-simulation of Aarts and Vaandrager [1], no known notion is able to

express subtyping in both choices and message types. As such, we introduce a novel notion of

simulation preorder called XYZW-simulation, which generalizes XY-simulation [1] and, as a

corollary, conventional notions like (plain) simulation and bisimulation.

Taking advantage of this corollary, we present a sound algorithm for our notion of subtyping,

based on the type bisimilarity algorithm of Almeida et al. [5]. This algorithm works by first

encoding the types as words from a simple grammar and then deciding their XYZW-similarity.

Being grammar-based and, at its core, agnostic to types, this algorithm may also find applications
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in other domains where non-regularity and contravariance play a part.

Finally, we describe the implementation of this algorithm in the type checker for FREEST [2,

4, 95], a functional programming language with support for context-free session types. In order to

evaluate the performance of our implementation, we designed a suite of 4000 tests, automatically

generated with the aid of the QuickCheck [22] testing framework for the Haskell programming

language, in which the FREEST compiler is written. We obtained satisfactory results, observing

only 200 timeouts under a limit of 30s. For a more realistic evaluation, and in order to compare

our adaptation with the original, we ran both algorithms side by side on a suite of 288 FREEST

programs exhibiting no subtyping. We did not observe significant differences in performance,

which suggests that our algorithm is viable for practical application.

Contributions We address the subtyping problem for context-free session types, proposing:

• A syntactic, rule-based definition of subtyping for higher-order context-free session types;

• A novel notion of observational preorder, XYZW-simulation;

• Based on this notion, a semantic subtyping relation for higher-order context-free session

types that also encompasses functional types;

• A sound subtyping algorithm based on the semantic subtyping relation;

• An implementation of the algorithm in the freely available FREEST language compiler[95];

• An empirical evaluation of the performance of the algorithm, based on a custom generative

testing framework developed with the aid of the QuickCheck library [22]

• A performance comparison with the equivalence algorithm of Almeida et al. [5].

Overview The first four chapter of this thesis set the stage for our contributions: in Chapter 2

we introduce the notion of types and subtyping in a functional setting; in Chapter 3 we introduce

session types in their classical (regular) form, as well as Gay and Hole’s notion of subtyping; in

Chapter 4 we introduce context-free session types and review previous work on their equivalence

and subtyping. In the remaining chapters we present our own work: in Chapter 5 we introduce

two novel, coinciding notions of syntactic and semantic subtyping for context-free session types;

in Chapter 6 we describe a sound algorithm based on our semantic notion of subtyping; in Chap-

ter 7, after a brief introduction to the FREEST programming language [2, 4, 95], we present some

FREEST programs that take advantage of subtyping and describe the changes that were necessary

to include this feature in the language compiler; in Chapter 8 we describe our automatic testing

framework and evaluate the performance of our implementation; finally, in Chapter 9 we conclude

the thesis and trace a path for the work to follow.

Related publications Besides this thesis, our work has resulted in two publications: a con-

ference paper [90] (accompanied by a technical report [91]), presented at CONCUR 2023, the

34th International Conference on Concurrency Theory in Antwerp, Belgium, and an extended

abstract [92], presented at INForum 2023, Simpósio de Informática in Porto, Portugal.



Chapter 2

Typing and subtyping

In the introduction, we discussed the usefulness of type systems, session types and subtyping in

abstract terms. To make matters more concrete, and to set the stage for our contributions, we begin

to introduce these topics more formally, in a functional setting. This presentation owes much to

Pierce [84] and Sangiorgi [88]. Readers familiar with type systems, induction and coinduction

may safely skip this chapter.

2.1 A simple functional language

Programming languages express computations, or how to produce a certain outcome (e.g. the

solution to a problem, the desired behavior of a system) from an initial set of conditions, following

well-defined rules.

Functions are mathematical objects that formalize these intuitive notions of input and output,

and are thus quite apt to model computations in a way that is amenable to formal analysis. They

are the basis of the λ-calculus, a universal model of computation capable of expressing the steps

necessary to obtain the solution to any theoretically solvable problem [21, 97]. Developed by

Alonzo Church in the 1930s, λ-calculus is only one such model: Turing machines [98], combina-

tory logic [25] and the π-calculus [73, 72] are examples of alternate formalisms with equivalent

computational power.

Programming languages typically take these computational models as the basis for their syn-

tax and semantics. The λ-calculus is the direct inspiration for many of the so-called functional

languages (e.g. Scheme [79], ML [75], Haskell [60], etc.), and its concepts have also found their

way to popular imperative languages such as Python and Java. Functional programming languages

typically favor a small but powerful set of constructs, and as such are easy to learn and analyze.

Thus, in order to understand the importance of typing and subtyping at the level of structured data,

we introduce a simple functional language with integers, booleans, records and variants (which

correspond roughly to data types in Haskell, OCaml, and other ML-like languages).
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expressions
e ::= λx → e | e e | x | i | true | false | if e then e else e | isZero e | {ℓ = eℓ}ℓ∈L | e.ℓ

Figure 2.1: Syntax for a simple functional language.

Expressions

Our language is based on expressions, syntactic structures that are either atomic or composed

from other expressions of arbitrary complexity, and that reduce to simpler expressions according

to well-defined criteria, much like elementary algebra. And just like in elementary algebra, some

expressions do not need to be reduced: these are called values. The meaning (or result) of an

expression is the value it reduces to after finitely many steps, and reducing an expression to a

value is known as evaluation.

Each sort of expression (denoted by metavariable e) represents a different computational con-

struct. According to the syntax in Fig. 2.1, our language includes functional abstractions (λx → e,

corresponding to “anonymous functions” or “lambda expressions” in mainstream programming

languages), function application (e1 e2, which applies function e1 to argument e2), variables (x, y,

z, f , etc.), integers (e.g., 0, 2, etc., denoted by metavariable i), booleans and conditional expres-

sions (true, false and if e1 then e2 else e3) and zero testing (isZero e). To provide for some form

of data aggregation, the language also allows building records ({ℓ = eℓ}ℓ∈L) and accessing their

fields (e.ℓ). The values in our language are abstractions, integers, booleans and records in which

all fields are also values.

The meaning of expressions

The meaning of our expressions is the value they eventually reduce to, after finitely many reduction

steps. How do we know an expression reduces to another, formally? The answer is given by a

reduction relation, a binary relation (a set of pairs), denoted by ↪→, that associates an expression

e1 the one it reduces to e2. We write e1 ↪→ e2 to mean (e1, e2) ∈ ↪→. Reduction is, of course, not

arbitrary—it follows certain well-defined criteria, which the relation must respect. These criteria

can be expressed in the form of inference rules: assuming a (possibly empty) set of statements

(called premises) to be true, we can infer another statement (called the conclusion). An inference

rule with no premises and conclusion c is typically written as simply c, and is called an axiom. An

inference rule with premises p1 . . . pn and conclusion c is typically written as follows.

p1 . . . pn

c

Inference rules allow us prove (or derive) statements systematically, as a finite series of infer-

ences: to prove that a certain statement holds, we look for an inference rule for which it is a valid

conclusion, and then prove that its premises hold. We recursively apply the same reasoning to the

premises, until reaching a rule with no premises (called an axiom, which expresses that a statement



Chapter 2. Typing and subtyping 7

R-APP1
e1 ↪→ e′1

e1 e2 ↪→ e′1 e2

R-APP2
e1 is a value e2 ↪→ e′2

e1 e2 ↪→ e1 e
′
2

R-APPABS
e2 is a value

(λx → e1) e2 ↪→ [e2/x]e1

R-IF
e1 ↪→ e′1

if e1 then e2 else e3 ↪→ if e′1 then e2 else e3

R-IFTRUE

if true then e2 else e3 ↪→ e2

R-IFFALSE

if false then e2 else e3 ↪→ e3

R-ISZERO
e ↪→ e′

isZero e ↪→ isZero e′

R-ISZEROTRUE

isZero 0 ↪→ true

R-ISZEROFALSE
i ̸= 0

isZero i ↪→ false

R-RCD
k ∈ L ek ↪→ e′k L′ = L \ {k}
{ℓ = eℓ}ℓ∈L ↪→ {ℓ = eℓ, k = e′k}ℓ∈L′

R-ACC1
e ↪→ e′

e.ℓ ↪→ e′.ℓ

R-ACC2
eℓ is a value (∀ℓ ∈ L) k ∈ L

{ℓ = eℓ}ℓ∈L.k ↪→ ek

(no rule for x)

Figure 2.2: Reduction rules for the simple functional language.

trivially holds). This is called an proof by rule induction. A derivation is typically expressed using

a similar notation to that used for inference rules.

...

p1
. . .

...

pn

c

The inference rules governing the reduction relation for our functional language are given in

Fig. 2.2. Naturally, they all have a statement (more precisely, what we call a judgment) of the

form e1 ↪→ e2 as the conclusion. With such rules, we can define our reduction relation as follows:

for some expressions e1 and e2, the statement e1 ↪→ e2 holds if it can be derived from the inference

rules in Fig. 2.2 in a finite number of steps.1 To actually construct the relation ↪→ (which is a set

of pairs of expressions), we proceed iteratively: starting with the empty set ∅, we add to it every

pair (e1, e2) that matches the rules without premises of the form e ↪→ e (R-APPABS, R-IFTRUE,

R-IFFALSE, R-ISZEROTRUE, R-ISZEROFALSE and R-ACC2). Then, we repeatedly add every

pair that matches the remaining rules if premises of the form e ↪→ e are satisfied by the pairs

already in the set. This is called an inductive definition. We now give an intuitive justification

for each of the rules, explaining how they can be used to produce a sequence of reduction steps

from an expression to a value. To reduce an application, we first reduce the applicand to a value

(R-APP1), then reduce the argument (R-APP2), and finally, if the applicand is an abstraction, we

substitute the argument for the bound variable in the body of the abstraction (R-APPABS, where

substituting expression e2 for variable x in expression e1 is denoted by [e2/x]e1 ). To reduce a

1Symbols like e or e1 are metavariables: they are implicitly universally quantified (“for any expression e...”), and
meant to be instantiated by concrete expressions like true, 84 or (λx → if x then 1 else 0).
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conditional expression, we reduce the condition to a value (R-IF), and if it is true, we reduce to

the expression following then (R-IFTRUE), and if it is false we reduce to the expression following

else (R-IFFALSE). To reduce an isZero expression, we must first reduce the enclosed expression to

a value. If this value is 0, the expression reduces to true (R-ISZEROTRUE), if it is any other inte-

ger, then the expression reduces to false (R-ISZEROFALSE). Records are reduced by successively

reducing each of their fields (R-RCD). Field access is reduced by first reducing the accessed

expression to a record (R-ACC1) and then to the expression corresponding to the selected field

(R-ACC2). Finally, notice that variables by themselves do not reduce; they make no sense unless

bound by an abstraction.

Note 2.1.1. Unbound variables are also said to be free. Expressions containing free variables

are said to be open, and otherwise closed. Bound variables can be renamed at will: we consider

expressions (λx → isZerox) and (λy → isZero y), for example, to be equivalent and interchange-

able (more precisely, they are said to be α-equivalent).

Note 2.1.2. Our syntax does not include common language constructs like local variable defini-

tions (let x = e in e) or sequential composition (e; e). These constructs can, however, be derived

from those we already have. Notice that, according to our reduction rules, writing let x = e1 in e2

amounts to writing (λx → e2) e1, while writing e1; e2 amounts to writing (λx → e2) e1 for some

x not occurring in e2.

Example 2.1.1. According to our syntax, the following are all valid expressions: the integer 84,

the record p = {age = 84,married = false}, the abstraction isNewborn = (λx → isZerox.age)

or the the application isNewborn p, i.e., (λx → isZerox.age) {age = 84,married = false}. But

what do these expressions mean, or, in other words, what is the value they reduce to? For the

first three, reduction makes no sense, since they are already values (appropriately, no rule applies

to them). The last expression is more complex. To uncover its meaning, we follow a series of

reduction steps that culminate in a value, as follows:

isNewborn p ↪→ isZero p.age ↪→ isZero 84 ↪→ false

Each step is, of course, established by a derivation. We give as an example one for the second step.

84, false are values age ∈ {age,married}
p.age ↪→ 84

R-ACC2

isZero p.age ↪→ isZero 84
R-ISZERO

Meaningless expressions

The expressions in our previous example are instances of meaningful expressions, i.e., expres-

sions that result in successful computations. But what about strange expressions like isZero true

and if (λx → x.age) then 1 else 0? Even though we cannot reduce them, we do not consider

them values either: they are stuck. Other expressions, like isNewborn p′ where p′ = {age =

false,married = 84}, do reduce some steps, but eventually get stuck as well. While syntactically
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correct, these expressions are semantically invalid, i.e., meaningless. In an implementation of this

language, they would trigger a run-time error signaling an unsuccessful computation. How can we

prevent such expressions from being written in the first place? Can they be detected statically, i.e.,

without trying evaluate them beforehand? These are some of the questions that type systems are

intended to answer.

2.2 A simple functional type system

How do we know if expressions can be evaluated? For abstractions, integers and booleans this is

immediate—they are values. For other compound expressions, evaluation depends on their sub-

expressions. We know that function applications (e1 e2) evaluate if e1 evaluates to an abstraction

(λx → e0), if e2 evaluates to some value v, and if e0 with v substituted for all occurrences of x

also evaluates. Conditional expressions (if e1 then e2 else e3) evaluate if either e1 evaluates to true

and e2 also evaluates, or if e1 evaluates to false and e3 also evaluates. isZero e expressions evaluate

to either true or false if e evaluates to an integer. Record expressions {ℓ = eℓ}ℓ∈L evaluate if each

ek for k ∈ L also evaluates (if they are already values, then {ℓ = eℓ}ℓ∈L is also a value). Finally,

field access expressions (e.ℓ) evaluate if e evaluates to a record containing a field with label ℓ.

Clearly, some expressions (namely applications, conditionals, zero testing and field access)

have constraints on the sort of values their constituents should reduce to. Others (namely integers,

booleans, abstractions, zero testing and record creation) clearly let us know what sort of values

to expect from their evaluation. What if we could use this information to attribute an interface to

expressions, a property that approximates the result of their evaluation? This would allow us to

know if expressions are well-formed, i.e., that all their sub-expressions satisfy their constraints.

To this interface or property we call a type, and to the rules that allow us to attribute it we call a

type system.

There are four sorts of values in our system: abstractions, integers, booleans and records. Thus

we should be able to construct four sorts of types and attribute them to expressions, depending on

the value they reduce to: function types (T → U ) to those that evaluate to abstractions taking

in values of type T and returning values of type U , an integer type (Int) to those that evaluate to

integers, a boolean type (Bool) to those that evaluate to booleans, and record types ({ℓ:Tℓ}ℓ∈L)
to those that evaluate to records containing fields k :Tk for each k ∈ L. Formally, our types are

constructed according to the grammar in Fig. 2.3.

Types are formally attributed through a judgment of the form Γ ⊢ e : T , read “expression e

has type T under context Γ”. A context Γ is a possibly empty mapping between variables and

types, of the form x1 : T1, . . . , xn : Tn. Contexts keep track of which variables are bound in

the scope of the expression to which we are trying to attribute a type (for example, the context

for sub-expression isZerox in λx → isZerox should include x : Int). Typing judgments are

usually defined through inference rules, since they succinctly capture the recursive reasoning we

outline above and, in simple cases such as this, allow us derive a straightforward typing algorithm.

Much like the reduction relation in Section 2.1, we can interpret the typing judgment as a ternary
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Syntax

expressions e ::= . . . | λx : T → e
types T,U ::= T → U | Int | Bool | {ℓ:Tℓ}ℓ∈L

Typing Γ ⊢ e : T

T-ABS
Γ, x : T ⊢ e : U

Γ ⊢ (λx : T → e) : T → U

T-APP
Γ ⊢ e1 : U → T Γ ⊢ e2 : U

Γ ⊢ e1 e2 : T

T-VAR
x : T ∈ Γ

Γ ⊢ x : T

T-INT

Γ ⊢ i : Int

T-TRUE

Γ ⊢ true : Bool
T-FALSE

Γ ⊢ false : Bool

T-IF
Γ ⊢ e1 : Bool Γ ⊢ e2 : T Γ ⊢ e3 : T

Γ ⊢ if e1 then e2 else e3 : T

T-ISZERO
Γ ⊢ e : Int

Γ ⊢ isZero e : Bool

T-RCD
Γ ⊢ ek : Tk (∀k ∈ L)

Γ ⊢ {ℓ = eℓ}ℓ∈L : {ℓ:Tℓ}ℓ∈L

T-ACC
Γ ⊢ e : {ℓ:Tℓ}ℓ∈L k ∈ L

Γ ⊢ e.k : Tk

Figure 2.3: Type system for the simple functional language

relation (a pair of triples) between contexts, expressions and types, inductively defined by the rules

in Fig. 2.3.

One thing to note is that we need to modify the original language of expressions: a type

annotation is needed in abstractions, since otherwise we would not know how to validate the

use of bound variables within the expressions they enclose (in practical languages, sophisticated

techniques like type inference allow programmers to omit these annotations).

Example 2.2.1. We show above that expression isNewborn p, short for

(λx → isZerox.age) {age = 84,married = false},

reduces to the boolean value false. Let Person stand for type {age: Int,married:Bool}. Using our

typing rules, and adding a type annotation to the abstraction isNewborn, writing it as

λx : Person → isZerox.age,

we can easily infer that this expression has type Bool. The reasoning is illustrated by the following

derivation:

D
⊢ isNewborn : Person → Bool

T-ABS

T-INT

⊢ 84 : Int

T-BOOL

⊢ false : Bool

⊢ p : Person
T-RCD

⊢ isNewborn r : Bool
T-APP
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where D stands for the following sub-derivation:

x : Person ∈ x : Person

x : Person ⊢ x : Person
T-VAR

age ∈ {age,married}
x : Person ⊢ x.age : Int

T-ACC

x : Person ⊢ isZerox.age : Bool
T-ISZERO

Example 2.2.2. We also note above that expression isNewborn p′, short for

(λx : Person → isZerox.age) {age = false,married = 84},

cannot be evaluated. Accordingly, our type system does not allow us to derive a type for it. The

reason for this lies in the mismatch between the type expected by f and the type of r′ when applying

the T-APP rule, the only typing rule that matches the expression:

...

⊢ isNewborn : Person → Bool
T-ABS

...

⊢ p′ : {age:Bool,married: Int}
T-RCD

⊢ isNewborn p′ : ??
T-APP ✗

The invalid expression in this example is not the only one for which we cannot derive a type. In

fact, we can easily show that our type system does not allow us to derive a type for any expression

that cannot evaluated. This important property is known as type safety, and is what gives our type

system the power to reject invalid expressions statically, i.e., without trying to evaluate them. Most

type systems in practical use nowadays, whether in functional or imperative languages, offer type

safety to some extent.

Note 2.2.1. The history of types and type systems can be traced back to the efforts of early 20th

century mathematicians to resolve Russell’s paradox (“does the set of all sets that do not contain

themselves contain itself?”), which threatened the role of set theory as a foundation of mathemat-

ics. Later, types were incorporated in the λ-calculus by Church as a response to the Kleene-Rosser

paradox, which showed the untyped system to be logically inconsistent.

2.3 Subtyping functional types

Our notion of type safety gives our type system a sort of soundness with respect to evaluation: if

we are able to derive the type of an expression, we can be sure its evaluation does not get stuck.

But in our quest for safety we have made our system too rigid, and the complementary property,

completeness, is not ensured: we cannot attribute a type to every expression that evaluates. A

simple example suffices to show this.

Example 2.3.1. Suppose we wish to remove the married field from the input type annotation in

isNewborn, writing it as:

λx : {age: Int} → isZerox.age
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Observe that we can still successfully evaluate expression isNewborn p:

f r ↪→ isZero r.age ↪→ isZero 84 ↪→ false

Notice, however, that we cannot derive a type for it, since the type of p, {age: Int,married:Bool},

does not have exactly the same fields as {age: Int}, the type accepted by abstraction isNewborn:

...

⊢ isNewborn : {age: Int} → Bool
T-ABS

...

⊢ p : {age: Int,married:Bool}
T-RCD

⊢ isNewborn p : ??
T-APP ✗

It is plain to see that this kind of mismatch poses no danger to type safety: a function ex-

pecting a record with less fields than the one we give it can only access fields that this record

contains, provided the type of these fields match. It is as if expressions of a certain type (e.g.

{age: Int,married:Bool}) can safely take on simpler types (e.g. {age: Int}, {married:Bool}, {})

if their context so requires. This is the reasoning behind subtyping.

Subtyping in general is often justified by appealing to Liskov’s principle of safe substitution:

a type T is said to be a subtype of U if a value of type T can be used wherever one of type U

is expected without violating any of the desirable properties (e.g. type safety) of type system in

question. We can formalize this notion in our type system by including an additional typing rule,

known as subsumption, that accounts for this principle:

T-SUB
Γ ⊢ e : U U ≤ T

Γ ⊢ e : T

This rule allows us to derive a type T for an expression e if we can derive type U for it and

if U is a subtype of T . The notion that a type is subtype of another is formalized through a

binary relation on types, denoted here by ≤. The definition of this relation, which must preserve

the desirable properties of the type system, becomes the central question whenever we wish to

formalize subtyping for a programming language.

Two properties that this relation should satisfy are immediately apparent from the principle of

safe substitution: reflexivity (any type is a subtype of itself) and transitivity (if type T is a subtype

of U and U is a subtype of V , then T is a subtype of V ). In other words, a subtyping relation

should be a preorder on types.

Inference rules are also a useful device to define a subtyping relation. Thus, we define ours

inductively by the rules in Fig. 2.4. We include a rule for each sort of type: two reflexive rules

for types Int and Bool, a rule for records and a rule for functions. The reflexive rules simply state

that atomic types are subtypes of themselves. The rule for records follows the reasoning outlined

above: a record type is subtype of another record type if it contains a subset of the labels of the

other, and each corresponding field is also in the subtyping relation. Thus we can easily derive the

desired result of {age: Int,married:Bool} ≤ {age: Int} for our motivating example.
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S-INT

Int ≤ Int
S-BOOL

Bool ≤ Bool

S-RCD
K ⊆ L Tk ≤ Uk (∀k ∈ K)

{ℓ:Tℓ}ℓ∈L ≤ {k:Uk}k∈K

S-ARROW
U1 ≤ T1 T2 ≤ T2

T1 → T2 ≤ U1 → U2

Figure 2.4: Subtyping rules for the simple functional language

Note 2.3.1. Whenever the subtyping relation allows a type constructor to vary in the number of

fields, we can say we are in the presence of width subtyping.

Note 2.3.2. Every record type is a subtype of {}, the type of records with no fields.

Subtyping for function types is somewhat less intuitive. Consider once again abstraction

(λx : {age: Int} → isZerox.age). The immediate type for this expression is, as the deriva-

tion in Example 2.3.1 shows, {age: Int} → Bool. But what other types should we allow it to

take on? Since we know that {age: Int} ≤ {}, should we let it take on {} → Bool, i.e., al-

low {age: Int} → Bool ≤ {} → Bool? Evidently, this cannot happen: if we allow this func-

tion to receive an empty record, it will surely access a field it does not contain. What about

{age: Int} → Bool ≤ {age: Int,married:Bool} → Bool? This is counterintuitive at first glance,

but is readily seen to be safe: supplying a record with more fields than required simply results

in these fields being ignored. These examples demonstrate the reasoning for the first premise of

the subtyping rule for function types: it is safe for a function type to be considered a subtype

of another if their respective argument types are also in the subtyping relation, but in the reverse

direction.

And what about the return types? How are they related? Suppose a function with type Bool →
{age: Int}. Is it safe to use it where a function with type Bool → {age: Int,married:Bool} is

expected? The answer is no, since the context may try to access the married field of the record

returned by the function. But using it in a context where Bool → {} is expected is fine, since it

contains all the fields known by the context (in this case, none). Thus we can see why the direction

of the return types is preserved in the second premise of the rule for functions.

Note 2.3.3. Some terminology is useful to succinctly describe the influence type constructors have

on the direction of the subtyping relation between their fields. When the direction of the relation

is maintained, they are said to be covariant. When the direction is reversed, they are said to be

contravariant. More uncommonly, when subtyping is not allowed, they are said to be invariant.

Thus we can describe the function type constructor as being contravariant on the argument type

and covariant on the return type.

Example 2.3.2. Consider expression isNewborn p from Example 2.3.1, short for

(λx : {age: Int} → isZerox.age) {age = 84,married = false}.

The following typing derivation shows how rule T-SUB now allows us to give it type Bool.
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...

⊢ isNewborn : {age: Int} → Bool
T-ABS

D
⊢ isNewborn : Person → Bool

T-SUB

...

⊢ p : Person
T-RCD

⊢ isNewborn p : Bool
T-APP

Where D stands for the following sub-derivation:

{age} ⊆ {age,married}
S-INT

Int ≤ Int

Person ≤ {age: Int}
S-RCD

S-BOOL

Bool ≤ Bool

{age: Int} → Bool ≤ Person → Bool
S-ARROW

Although we do not show it, we could easily demonstrate that the inclusion of the subsumption

rule in our system does not allow it to give a type to terms that do not evaluate. As such, we have

increased the flexibility of our system (i.e., the set of valid, meaningful expressions it is able to

type) without compromising its safety.

Note 2.3.4. Type safety is not the only property offered by type systems, nor is it the only one that

subtyping should preserve (in fact, many type systems only offer it to some extent). As stated in

the introduction, session type systems offer some guarantees related to communication; these are

examples of properties that should also be preserved by subtyping.

Note 2.3.5. While subtyping is meant to combat the incompleteness of a type system with respect

to evaluation, it is typically not enough to eliminate it altogether. In our case, an expression like

(if true then 84 else true) can be fully evaluated to 84, but remains untypable even with subtyping.

How does subtyping work in practice? How can we incorporate it in a programming language

compiler? In a simple type system such as the one explored in this section, a subtyping algorithm

can be obtained directly from reading the subtyping rules upward, building a derivation rooted at

the subtyping statement we want to check. If we want to check that T1 → U1 ≤ T2 → U2, we

recursively check that T2 ≤ T1 and U1 ≤ U2, and so on. This procedure is guaranteed to terminate

because each recursive call we check successively “smaller” types (culminating in atomic types

like Int or Bool). Furthermore, there is no ambiguity in which rule to apply, because the subtyping

rules are syntax directed: given any statement T ≤ U , there is at most one rule for which this

statement matches the conclusion.

Note 2.3.6. An algorithm for the original typing relation Γ ⊢ e : T (without subtyping) can

also be obtained directly from the rules in Fig. 2.3. However, this is not the case if we include the

subsumption rule to account for subtyping, because this rule makes the system not syntax directed:

since it matches any context, expression and type, we can apply T-SUB instead of any other rule at

any point in a derivation. Still, this rule is useful to explain subtyping at a purely theoretical level.

Pierce [84] shows how typing rules can be rewritten to accommodate subtyping without T-SUB.
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Syntax (continued)

expressions e ::= . . . | ℓ e as T | case e of {ℓ xℓ → eℓ}ℓ∈L

Reduction (continued) e ↪→ e

R-TAG
e ↪→ e′

ℓ e as T ↪→ ℓ e′ as T

R-CASE1
e ↪→ e′

case e of {ℓxℓ → eℓ} ↪→ case e′ of {ℓxℓ → eℓ}

R-CASE2
case (k e as T ) of {ℓ xℓ → eℓ} ↪→ [e/xk]ek

Typing (continued) Γ ⊢ e : T

T-TAG
k ∈ L Γ ⊢ e : Tk

Γ ⊢ k e as ⟨ℓ:Tℓ⟩ℓ∈L : ⟨ℓ:Tℓ⟩ℓ∈L

T-CASE
Γ ⊢ e : ⟨ℓ:Tℓ⟩ℓ∈L Γ, xk : Tk ⊢ ek : T (∀k ∈ L)

Γ ⊢ case e of {ℓ xℓ → eℓ}ℓ∈L : T

Figure 2.5: Extending the simple functional language with variant types.

A simple functional language with just functions, records and basic types is enough to set up

and resolve the conflict between safety and flexibility from which subtyping arises. But from the

point of view of structured data, this language and its type system are not very interesting: for

example, they do not allow us to straightforwardly describe and use common data structures like

lists or trees. In the rest of this section we briefly introduce some constructs that will allow us to

do this, and explain how subtyping can be applied to them as well.

Note 2.3.7. Subtyping is a standard feature of many type systems, and the literature on the topic

is vast [7, 13, 18, 19, 26, 33, 63]. Its conventional interpretation, based on the notion of substi-

tutability, originates from the work of Liskov [65].

2.4 Variant types

Variants or tagged unions roughly correspond to datatypes in ML-like languages or enums in Rust.

They can be succintly described by contrast with records: while records allow us to group together

multiple pieces of data with possibly different types, variants allow us to say that a piece of data

belongs to one of several possible kinds of data. Each piece is tagged with a label ℓ and the variant

type T it belongs to (ℓ e as T ), so that it can later be analyzed and dealt with accordingly (using a

case analysis construct of the form case e of {ℓ → e}). The modifications made to accommodate

variants in the language and type system are shown in Fig. 2.5

Example 2.4.1. Assume we introduce floating-point numbers (expressions like 1.23 of type Float)

and arithmetic operators in our language, and suppose we want to use them to represent geometric

figures on a plane. We represent circles by values of type Circle = {x:Float, y:Float, r:Float},

squares by values of type Square = {x:Float, y:Float, s:Float}, etc. We know that these types
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have something in common—they all represent a geometric figure—but as it stands, our type

system is not capable of expressing this commonality. Observe that we cannot write a well-typed

function area that takes the area of an arbitrary shape: it would need to have, simultaneously, types

Circle → Float and Square → Float, etc. The best we can do is write a specialized function for

each kind of shape (areaCirc, areaSqr, etc.), which is quite cumbersome:

areaCirc = λx : Circle → π × x.radˆ2

areaSqr = λx : Square → x.lenˆ2

Variants provide exactly what we need to group together these types in a single type Fig and write

a function area that will work on any of them:

Fig =⟨Circ:Circle

,Sqr: Square⟩

area = λx : Fig → case x of

{Circ c → π × c.radˆ2,

,Sqr s → s.lenˆ2}

Of course, we now need to appropriately tag the records representing circles or squares. Whereas

without variants we would simply write uc = {x = 0, y = 0, rad = 1} to represent the unit circle,

we now need to write uc = (Circ {x = 0, y = 0, rad = 1} as Fig). The Circ tag is necessary to let

case expressions know which branch to follow, while the Fig tag is necessary to ensure that case

expressions support every possible branch in a given variant type.

As an example of how case expressions reduce, consider the following evaluation:

area uc

↪→ case uc of {Circle c → π × c.radˆ2, Square s → s.lenˆ2}

↪→ π × {x = 0.0, y = 0.0, rad = 1.0}.radˆ2

↪→ π × 1ˆ2 ↪→ π × 1 ↪→ π

And observe how we can derive a type for expression area uc by the following derivation:

D1 D2

⊢ area uc : Float
T-APP

Where D1 stands for the following sub-derivation:

...

x : Fig, c : Circle ⊢ π × c.radˆ2 : Float

...

x : Fig, s : Square ⊢ s.lenˆ2 : Float

x : Fig ⊢ case x of {Circ c → π × c.radˆ2,Sqr s → s.lenˆ2} : Float
T-CASE

⊢ area : Fig → Float
T-ABS

And D2 for the following sub-derivation:

Circ ∈ {Circ,Sqr}
...

⊢ {x = 0.0, y = 0.0, rad = 1.0} : Circle

⊢ uc : Fig
T-TAG
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Notice, however, that our type system is once again too rigid, since it does not let us type some

expressions envolving variants. Take, for example, expression area uc′ where uc′ the unit circle

tagged with a variant type with a single branch, i.e.:

uc′ = Circ {x = 0.0, y = 0.0, rad = 1.0} as ⟨Circ:Circle⟩

Although it can be easily shown that this expression evaluates to π, the type system requires

the argument to function area to be of type Fig. But it is clear to see that any value with type

⟨Circ:Circle⟩ is safe to use where one of type Fig is required, since any case expression that

analyzes a value of type Fig will be prepared to analyze one of type ⟨Circ:Circle⟩. More generally,

a value of any variant type ⟨ℓ:Tℓ⟩ℓ∈L can be used in place of a value of type ⟨k:Uk⟩k∈K if L is a

subset of K and for each label in common, the field type in the former can also be used in place

of the corresponding field type in the latter. Then, by the principle of safe substitution, we arrive

at the following subtyping rule for variants:
S-VRT
L ⊆ K Tℓ ≤ Uℓ (∀ℓ ∈ L)

⟨ℓ:Tℓ⟩ℓ∈L ≤ ⟨k:Uk⟩k∈K
We introduced variants by contrasting them with records. It is also interesting to compare them

with respect to subtyping: the rule for variants is nearly identical to that for records. The only

difference lies in the direction of the subset relation ⊆, which is reversed.

Note 2.4.1. Both records and variants exhibit width-subtyping, but they differ on how the fields

can vary between subtype and supertype. We can extend the covariant/contravariant terminology

introduced in Note 2.3.3 to also describe the relationship between the direction of the subset rela-

tion ⊆ on the premises and the direction of the subtyping relation ≤ on the conclusion of subtyping

rules. When the direction of ⊆ is the same as ≤ (as in variant types), type constructors are said to

be covariant on width, and when the direction is reversed (as in record types), types are said to be

contravariant on width.

2.5 Recursive types

Another application of variant types is in the description of data structures of variable size, such

as lists and binary trees. Consider the typical inductive definition for lists of integers: “a list of

integers is either an empty list, or a pair containing an integer and a list of integers”. How can we

define this type? If we model the empty list as a trivial value such as the empty record {}, and a

pair as a record with two fields labelled value and rest, we can define the type of lists of integers

as the infinite type that satisfies the following equation:

List = ⟨nil: {}, cons: {val: Int, rest: List}⟩2

Unlike all definitions we have seen thus far, this one is recursive: it refers to the very thing it is

defining. However, it is rather inconvenient to rely on an equation every time we want to write
2The labels nil (latin for “nothing”) and cons (short for “construct”) are conventional, and originate from the Lisp

language.
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a recursive type. In the literature, there is a more convenient notation to express recursion. This

notation relies on the introduction of two constructs in the type language: type references t, u,

symbols that stand for types, and the recursion operator µ, which binds the occurrences of a given

type reference in a type to that type itself. With this notation, we can represent the type of lists of

integers “anonymously”, as follows.

µt.⟨nil: {}, cons: {val: Int, rest: t}⟩

Example 2.5.1. Similarly to lists, we can write the type of binary trees of integers as:

µt.⟨empty: {}, node: {left: t, val: Int, right: t}⟩

Example 2.5.2. JSON a simple data exchange scheme, composed of atomic values like null, true,

false, numbers and strings, as well as compound values like arrays (sequences of JSON values)

and key-value maps (structures that associate strings to JSON values) [34]. Using recursion, we

can write the type of an abstract representation of JSON data:

µt.⟨null: {}

, bool:Bool

, number:Float

, string:String

, array:µu.⟨nil: {}, cons: {val: t, rest:u}⟩

, object:µu.⟨nil: {}, cons: {key: String, val: t, rest:u}⟩⟩

Equirecursive types

While recursive types afford more expressivity for a type system, they also raise some complica-

tions. For example, if we substitute the self-references in a recursive type by the type in its entirety

(also known as “unfolding” the type) we can write the type of lists in an infinite number of ways:

µt.⟨nil: {}, cons: {val: Int, rest: t}⟩

⟨nil: {}, cons: {val: Int, rest:µt.⟨nil: {}, cons: {val: Int, rest: t}}⟩

⟨nil: {}, cons: {val: Int, rest: ⟨nil: {}, cons: {val: Int, rest:µt.⟨nil: {}, cons: {val: Int, rest: t}}}⟩

. . .

Clearly, all of these unfoldings represent the same infinite type, the solution to the equation

List = ⟨Nil: {},Cons: {val: Int, rest: List}⟩. Thus we can consider all of them as equivalent and

interchangeable—this is known as the equirecursive interpretation. Subtyping follows the same

reasoning: we can consider type InfList = µt.⟨cons: {val: Int, rest: t}⟩ (the type of infinite lists) as

a subtype of any of the three types above—all we need is to unfold it to the limit. This reasoning

is formalized in the following subtyping rules.

S-RECL
[µt.T/t]T ≤ U

µt.T ≤ U

S-RECR
T ≤ [µu.U/u]U

T ≤ µu.U
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Notice, however, that these rules leave us with a cyclical, infinite subtyping derivation:

. . .

. . .

∞
...

InfList ≤ List

{val: Int, rest: InfList} ≤ {val: Int, rest: List}
S-RCD

⟨cons: {val: Int, rest: InfList}⟩ ≤ ⟨nil: {}, cons: {val: Int, rest: List}⟩
S-VRT

⟨cons: {val: Int, rest: InfList}⟩ ≤ List
S-RECR

InfList ≤ List
S-RECL

To accept such infinite derivations, we must adopt a coinductive (rather than inductive) interpreta-

tion of the subtyping rules. This is achieved by reading the rules “backwards”: each pair of types

in the subtyping relation ≤ must match the conclusion of a rule in such a way that the premises

are also satisfied by ≤. In this reading, we try to see just how far we can go without reaching a

contradiction—thus a derivation is valid if it stops at an axiom or if it extends infinitely. Contrast

this with its original inductive interpretation: if the premises of a rule are satisfied by ≤, then so

is its conclusion. In this reading, the conclusion must follow from base cases in a finite number of

steps.

Note 2.5.1. The difference between induction and coinduction can be intuitively understood through

a comparison to the legal principles of the presumption of guilt and innocence: induction corre-

sponds to “guilty until proven innocent”, while coinduction corresponds to “innocent until proven

guilty”. A deeper understanding would require a lengthy detour through the theory of monotone

functions and fixed points. These matters are explored at length by Sangiorgi [88].

The difference between the inductive and coinductive definitions of the subtyping relation is

even clearer when we compare how they can be iteratively constructed. The inductive construction

is a growing sequence of sets: starting with the empty set, we add all pairs matching a rule without

premises of the form T ≤ T , and then repeatedly add every pair matching a rule with its premises

satisfied by the last set. The coinductive construction, in contrast, is a decreasing sequence of sets:

starting from the set of all pairs of types, we repeatedly remove all pairs that match the conclusion

of a rule for which at least one of the premises is not satisfied by the pairs in the set.

Note 2.5.2. To ensure that the equations introduced by equirecursive types have a unique solution,

types must be what is called contractive: every self-reference must appear under a type constructor.

In other words, types may not contain subterms of the form µx.µx1. . . . µxn.x [84].

While accepting infinite derivations is fine in theory, it places a burden on practical imple-

mentations: to support equirecursive types, a type checker must somehow be able to represent

infinite types and derivations finitely. These issues, along with possible solution, are discussed by

Pierce [84] The algorithm we propose in Chapter 6, however, is also capable of handling equire-

cursive subtyping for functional types.

Note 2.5.3. The algorithmic properties of subtyping for recursive types under an equirecursive

interpretation were first explored by Amadio and Cardelli [8].
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Isorecursive types

Alternatively, we can view each of these unfoldings not as equivalent, but isomorphic, requiring

expressions of one type to be converted to its unfolding, and vice-versa—this is known as the

isorecursive interpretation. While this allows us to stay in the conventional inductive interpreta-

tion, it requires that we include explicit “fold” and “unfold” operations in the expression language,

to convert each expression the correct type, as needed. While this leads to simpler subtyping algo-

rithms (there is no need to deal with infinite structures), conversion between unfoldings introduces

a burden on the theoretical side, leading to complex inductive proofs for important properties of

these algorithms.

The literature on session types tends to follow the equirecursive approach, and this work is

no exception. As such, all instances of recursive types in the following chapters are interpreted

equirecursively, and the subtyping relations (and algorithm) we propose in Chapter 6 is designed

to follow this equirecursive interpretation as well.



Chapter 3

Regular session types

The previous chapter shows how type systems with support for structured data types like records

and variants are an accessible and lightweight tool to enforce safe, disciplined data processing by

statically detecting and rejecting invalid data operations. It also shows how subtyping makes type

systems more flexible and usable without compromising their safety guarantees.

However, as stated in Chapter 1, programs nowadays do more than process data—they ex-

change it, and these exchanges usually follow structured patterns of communication, i.e., proto-

cols. Can type systems also enforce safe and disciplined data exchange? And can they do this

while remaining flexible and usable? These are some of the questions we explore in this chapter.

3.1 Communication and concurrency

In a software system, programs may exchange data at multiple levels: at the macro-level, the

system may be composed of several geographically distributed machines communicating over a

network; at the micro-level, a single program running on one of these machines may be organized

as multiple threads of execution working interleavedly or in parallel, using different resources,

and exchanging data for processing or synchronization purposes. It is useful, then, to think about

these concepts in more general terms: any form of communication presupposes some form of

concurrency, i.e., the organization of the system in multiple processes acting independently yet

cohesively. 1

How do processes communicate? Concurrent systems typically follow one of two common

approaches: shared memory and message-passing. In the shared memory approach, processes

read and write data directly to an area of memory or data structure they all have access to. While

efficient, this approach is not very safe: since processes act independently, the order and timing

of their memory accesses cannot generally be predicted, leading to unpredictable behavior and

memory states (also known as race conditions) and, consequently, to synchronization problems.

Over the years, many solutions have been proposed to make shared memory concurrency safer,

1Concurrency should not be confused with paralellism. The former is concerned with the organization of compu-
tation as a multitude of processes that act independently yet cohesively, but not necessarily simultaneously (processes
can be interleaved on the same processor). Simultaneous action between independent processes is the concern of par-
allelism, which naturally presupposes some form of concurrency.

21
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mainly in the form of synchronization primitives, i.e., constructs that programmers can use to en-

force disciplined access to shared resources. Examples of such primitives include locks [31] and

semaphores [32]. Despite being widely used, these solutions can be cumbersome to implement,

and their effectiveness relies on their correct application by programmers (who tend to be unreli-

able).

An alternative way for processes to communicate is by exchanging messages between them-

selves through private communication channels—the message-passing approach. While the man-

agement of channels and messages incurs some overhead, this approach is arguably safer: the

exchanged data is only known by the sending and receiving processes, who use it to update their

own private state, thus avoiding some race conditions and the associated synchronization prob-

lems. As a bonus, this approach is also more practical, since it generally spares programmers from

the intricacies of implementing synchronization primitives.

3.2 From channel types to session types

Despite the relative simplicity of channels, their effective use also requires some discipline on the

part of programmers. For instance, They should ensure that processes only send messages that

receivers are equipped to handle (e.g. if the receiver expects an integer, the sender should not send

a boolean).

This seems like a case where type systems would be useful—as we have seen, they are valuable

tools to enforce the disciplined use of software components, and channels are no exception. The

simplest way to ensure that messages contents always have the expected type is to restrict them to

a single type, making channels homogeneous. Thus we attribute type Channel Int to integer-only

channels, Channel Bool to boolean-only channels, etc. We can then use these types to ensure that

sending and receiving operations on channels match the types of the messages they are restricted

to carry. Extending the functional language of Chapter 2, we could use channel types to ensure

that expressions (send 84 c) or (isZero (receive c)) are only considered valid if c is a channel of

type Channel Int.

While this restriction provides some form of type safety to message-passing programs, it still

leaves a margin for synchronization problems. For example, two communicating processes may

try to send a message at the same time, causing a communication error. Alternatively, they both

may try to receive a message from each other, resulting in a deadlock (a situation where multiple

processes depend on each other to advance, but none can do so). A simple solution, then, is

to make channels unidirectional, ensuring messages flow only in one direction. To do this, we

split a channel in two endpoints: the sending endpoint and the receiving endpoint, and let types

control the sending and receiving capabilities of each, attributing Receive Int to the receiving ends

of integer channels, SendBool to the sending ends of boolean channels, etc. This way, the type

system can reject operations like (send 5 r) where r has type Receive Int, since according to its

type, r can only receive data.

Besides being safer, unidirectional channels also allow us to introduce subtyping for endpoint
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types. Consider a channel end of type Receive {age: Int,married:Bool}. Any process with access

to this channel end is prepared to receive records with fields age: Int and married:Bool, but it

should face no problems if it receives a record of type {age: Int,married:Bool, gpa:Float}, since

the gpa field will simply be ignored. It should not, however, be able receive a record of type

{age: Int}, since it may try to access the missing married field. More generally, any process

expecting a message of type U can receive a value of type T provided that T is a subtype of

U . Thus, from the principle of safe substitution, it follows that we can use a receiving end for

values of type T wherever one for values of type U is expected, arriving at the following covariant

subtyping rule:

S-RECEIVE
T ≤ U

ReceiveT ≤ ReceiveU

What about sending endpoints? Is is safe to replace one of type Send {age: Int,married:Bool}
with another of type Send {age: Int,married:Bool, gpa:Float}? The answer is no, since a process

expecting the former will send records without a gpa:Float field, which the process on the receiv-

ing endpoint may try to access. The opposite, however, is safe: we can replace a sending endpoint

of type Send {age: Int,married:Bool, gpa:Float} with one of type Send {age: Int,married:Bool},

since the extra gpa:Float field can be safely ignored on the receiving endpoint. We thus arrive at

the following contravariant subtyping rule:

S-SEND
U ≤ T

SendT ≤ SendU

Note 3.2.1. Since plain channel with types of the form ChannelT combine both sending and

receiving capabilities, they can only be substituted by other channels of type ChannelU with

T ≤ U and U ≤ T . In other words, T and U must be equivalent. The plain Channel type

constructor is said to be invariant (cf. Note 2.3.3).

Note 3.2.2. The subtyping properties of channel types were first explored by Pierce and San-

giorgi [85] in the context of the π-calculus, a computational framework that takes process com-

position and message-passing (rather than functional application and abstraction) as its building

blocks [73, 74].

3.3 Regular session types

While making channels both homogeneous and unidirectional avoids some of their indisciplined

uses and the associated communication errors, it also makes them unsuitable to comfortably model

many structured communication patterns where processes exchange multiple types of data back

and forth.

Can type systems maintain communication safety in the presence of heterogeneous, bidirec-

tional channels? Session types, introduced by Honda et al. [51, 52, 94], provide an affirmative
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answer to this question. Instead of representing the static capability to either send or receive

messages (such as Send Int or Receive Bool), session types represent communication protocols

(the exact order, direction and type of the messages that should be sent on a channel endpoint)

allowing type systems to verify that programs really communicate as intended.

In this section, we present the classical (also known as, for reasons we explain below, regular)

version of session types, and in the next we explore their subtyping properties. This will make clear

how context-free session types, presented in the next chapter, innovate, and how their subtyping

properties—the focus of our contributions—arise.

Sending and receiving

Session types represent communication protocols through the composition of individual commu-

nication actions, i.e., sending and receiving operations. This is best shown by example. The

following session type S represents a simple protocol to be carried on an heterogeneous, bidirec-

tional channel: an integer is sent, then a boolean is received. We can imagine, for instance, that

a process is using an endpoint governed by this type to ask another process (a “smarter” one)

whether an integer is prime:

S = !Int.?Bool.End

We use !T and ?T to denote, respectively, the sending and receiving of a message of type T , the

dot “.” to denote sequential composition (first this, then that), and End to represent the end of a

communication session.

There’s two sides to every protocol: when one process sends, the other receives, and vice-

versa. Thus the “smarter” process in this example should use a channel governed by a session type

like S but with the direction of the messages reversed—what we call a dual of S.

?Int.!Bool.End

Linearity

At this point the reader may wonder how this protocol is enforced. What prevents the enquiring

process from sending multiple integers on a channel of type S? Or from not engaging with the

other process at all? This can be achieved by using a linear type system, i.e., a type system where

some variables (in our case, those bound to channels) are ephemeral and require exactly one use.

After such a variable is used, it is considered out of scope and any further use of it is invalid.

Conversely, failure to use the variable also results in an error. For example, if c is bound to a

channel endpoint of type !Int.?Bool.End, the linear type system would reject any process that

attempts to use c twice (as in send 84 c; send 119 c), as well as any process that does not use it at

all.

If c is consumed by being passed to send, how can the inquiring process receive a response

from the smarter process? The solution is for send to give back the channel endpoint, but now
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with type ?Bool.End. The same should happen, in turn, with receive: given an endpoint of type

?Bool.End, it should return not only the incoming boolean but also an endpoint of type End. Faced

with an endpoint of this type, the inquiring process has no choice but to terminate the connection

with close, which should return an unrestricted and trivial value like {}.

Note 3.3.1. Linear type systems, derived from the linear logic of Yves Girard [45], let us view

variables as resources that allow exactly one use. Beyond message-passing communication (where

the resources are channel endpoints), linear type systems are also useful to extend type safety to

other language features such as low-level memory management (where the resources are pointers)

and file system interfaces (where the resources are file handles).

Linear functions

Using a linear type system in a functional setting requires us to be careful about how variables are

handled by functional abstraction and application.2

Suppose channels are introduced by a constructor (channelS) that returns a pair of channel

endpoints, one of session type S and another of a session type dual to S (i.e., inverting its sending

and receiving actions). Consider then the following expression:

let (s, r) = channel !Int.End in

let f = λx : Int → close (sendx s) in

f 84; f 119;

close (receive r)

Clearly, the linear restrictions on variables bound to channel endpoints are respected: both s and r

are use exactly once. Yet, the protocol specified during the construction of the channel (!Int.End,

send a single integer and close the channel) is not respected: evaluating both f 84 and f 119 causes

two integers (84 and 119) to be sent. The problem lies in the fact that s is enclosed in an abstraction

that is bound to variable f , and f variable is used twice.

One solution to this problem is to also place linear restrictions on variables bound to abstrac-

tions. This will prevent us from using f twice, and ensure the protocol is followed. This is,

however, too restrictive—most functions are meant to be used multiple times. A more sensible

approach is to include linear functions alongside the usual (unrestricted) ones. We do this by in-

troducing, at the level of expressions, linear abstractions (λx : T
1→ e), and, at the level of types,

the corresponding linear function types (T 1→ U ). We then extend the linear restrictions to vari-

ables of linear function types as well, thus ensuring that linear abstractions are used exactly once.

Finally, we introduce another constraint in the system: linear variables may not appear in the body

of unrestricted abstractions. With these new constructs and constraints, the type system would not

2It also requires us to revise field access on records (e.ℓ), since we cannot discard fields holding channel endpoints.
The solution is to generalize field access to record elimination, let {xℓ = eℓ}ℓ∈L = e1 in e2}. Since this change is
only felt at the level of expressions, we will not consider it further.
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allow us to write the previous example. We can write a similar, well-behaved expression:

let (s, r) = channel !Int.End in

let f = λx : Int
1→ close (sendx s) in

f 84;

close (receive r)

Choice

Many communication protocols feature branching points where one process can choose how to

proceed with communication from a set of options offered by another. Imagine, for instance, that

the smarter process in our initial example is an efficient mathematical server that offers multiple

services related to prime numbers: checking whether an integer is prime, checking whether two

integers are coprime3, or calculating the nth prime number. Individually, and from the point of

view of both client and server, each service could be represented as one of the following session

types.

client endpoint server endpoint

primality check !Int.?Bool.End ?Int.!Bool.End

coprimality check !Int.!Int.?Bool.End ?Int.?Int.!Bool.End

nth prime !Int.?Int.End ?Int.!Int.End

But how can we express this as a single type for each participant? In order to support such branch-

ing protocols, session types provide alternative composition operators ⊕ (internal choice) and N
(external choice) that allow us to group together the types corresponding to each service as a set

of options, one of which must be selected by the client (using a select operation) and all of which

must be supported by the server (using a match operation).

client endpoint server endpoint

⊕{IsPrime: !Int.?Bool.End

,AreCoprimes: !Int.!Int.?Bool.End

,NthPrime: !Int.?Int.End}

N{IsPrime: ?Int.!Bool.End

,AreCoprimes: ?Int.?Int.!Bool.End

,NthPrime: ?Int.!Int.End}

Now, if the client wants to check if an integer is prime, it must first perform select isPrime. This

operations returns a continuation endpoint of type !Int.?Bool.End, on which the client can continue

communication (if the client had selected AreCoprimes instead, this endpoint would have type

!Int.!Int.?Bool.End, and so on).

The server, however, has quite a different task: it must be ready to communicate according to

any of the options it offers (IsPrime, AreCoprimes or NthPrime). As such, the match operation

takes the form of a branching construct (not unlike the case expressions in Section 2.4) where

each branch binds the continuation endpoint to a variable and performs the necessary operations
3Two integers are coprimes if their greatest common divisor is 1.



Chapter 3. Regular session types 27

to fulfill its corresponding part of the protocol. Let s be an endpoint with the external choice type

above. Then, the match operation should look something like the following.

match s with {IsPrime s → let (n, s) = receive s in

let s = send (primen) s in

close s

,AreCoprimes s → . . .

,NthPrime s → . . .}

Recursion

The prime number server protocol described by the session types above is quite limited: the server

can only provide one service per channel before closing the connection. This is not very sensible,

since a client may wish to use multiple services, or the same service multiple times (e.g., to check

multiple numbers for primality). How can we do this without establishing multiple connections

between the client and the server?

Using the recursion operator introduced in Section 2.5, we can express a potentially infinite

protocol where the client may request an arbitrary number of services from the server on a sin-

gle connection. To do this, we can replace End by a self-reference at the end of each option.

This means that, after a service is completed, the client may request a new one (conversely, after

providing a service, the server must be ready to handle any of the options again). We also want

to allow the client to terminate the connection; to do this, we can introduce a Finish option that

simply leads to End. We are thus left with the following types for the client and server endpoints.

client endpoint server endpoint

µs.⊕{IsPrime: !Int.?Bool.s

,AreCoprimes: !Int.!Int.?Bool.s

,NthPrime: !Int.?Int.s

,Finish:End}

µs.N{IsPrime: ?Int.!Bool.s

,AreCoprimes: ?Int.?Int.!Bool.s

,NthPrime: ?Int.!Int.s

,Finish:End}
In the rest of this section, we write PrimeClient to refer to the session type on the left, and

PrimeServer to refer to the one on the right.

Syntax

As this point we are ready to introduce the syntax of session types more formally. It is given by the

two mutually recursive grammars in Fig. 3.1. The first grammar (T,U ) defines the syntax of types

in general, while the second (S,R) defines the syntax of session types exclusively (this separation

is necessary to rule out nonsense types like ?Int.(Int
1→ Int)).

On the side of types in general, we have type Int (which stands also for other basic types like

Bool, String, etc.), unrestricted functions T ∗→ U (now annotated with ∗), linear functions T 1→ U ,

records {ℓ:Tℓ}ℓ∈L and variants ⟨ℓ:Tℓ⟩ℓ∈L, general type references t, the recursion operator for

types in general µt.T and, finally, session types S.
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types T,U ::= Int | T
m→ U | Lℓ:TℓMℓ∈L | t | µt.T | S

session types S,R ::= ♯T.S | ⊙{ℓ:Sℓ}ℓ∈L | End | s | µs.S

multiplicities m,n ::= ∗ | 1

records/variants L·M ::= {·} | ⟨·⟩

polarities ♯ ::= ? | !

choices ⊙ ::= ⊕ | N

Figure 3.1: The syntax of regular session types

Session types, in turn, can be constructed using input and continuation ?T .S (receive a mes-

sage of type T and continue according to S), output and continuation !T .S (send a message of type

T and continue according to S), internal choice ⊕{ℓ:Sℓ}ℓ∈L (choose a label k in L to continue

according to Sk), external choice N{ℓ:Sℓ}ℓ∈L (offer all labels in L as a choice, handling each

possible continuation Sk for all k ∈ L) and the End type (close the channel). Finally, we include

session type references s and the recursion operator for session types µs.S. While this may seem

redundant, it is actually necessary—including recursion only at the level of types in general would

rule out types like !Bool.(µs.?Int.s) (send a boolean and then receive integers forever). For con-

venience, we let x range over both t and s (thus µx.T may represent a recursive functional type as

well as a recursive session type).

Example 3.3.1. Our syntax is quite flexible. On the functional side, we can have channel end-

points as function arguments (e.g., (?String.End) ∗→ Bool), return values (e.g., Int 1→ ⊕{A:End}),

record fields (e.g., {a:String, b: ?Int.End}), etc. On the side of session types, we can send and

receive functions (e.g., !(Int ∗→ Bool).?Bool.End), complex data types (e.g., ?List.End) or even

other channel endpoints (e.g., !(?Int.End).End). The ability to express the passing of endpoints

along endpoints allows us to characterize our session types as higher-order (otherwise, we would

characterize them as first-order).

Note 3.3.2. The syntax of regular session types dictates that all sending and receiving actions be

followed by a continuation, ruling out types like ?Int or ?Int.!Bool. As we show below, this limits

the protocols they can express, and it is precisely this limitation that context-free session types

address.

3.4 Subtyping regular session types

We now arrive at the subtyping problem for regular session types: when can we consider a session

type S to be a subtype of R? In other words, when is it safe to treat a channel endpoint of type S

as if it had a simpler type R?

Since we have already explored subtyping for unidirectional channel types (ReceiveT and

SendT ) in Section 3.2, we begin by examining the session type constructors that most closely
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resemble them: input and continuation ?T .S, and output and continuation !T .S. This resemblance

is, of course, located in the input and output part of the session type constructors. The difference,

however, is twofold: (1) the ?T .S and !T .S constructors characterize a single, rather than every

intput/output action to take place on a certain channel endpoint, and, as a consequence, (2) they

contain also a continuation part where the remaining actions are described by another session type.

It turns out that difference (1) is immaterial: the same reasoning outlined in Section 3.2 applies

whether we are characterizing a single or every input/output action—it remains true that we can

use a receiving endpoint for values of type T wherever one for values of type U is expected if T

is a subtype of U (?T .S is covariant on T ), and, conversely, it also remains true that we can use

a sending endpoint for values of type T wherever one for values of type U is expected if U is a

subtype of T (!T .S is contravariant on T ). As such, we need only to account for difference (2),

and here the reasoning is straightforward: if subtyping holds for the first action, it must hold for

the remaining actions too. As such, we check subtyping on the continuation types recursively, in

the same direction (in other words, ?T .S and !T .S are both covariant on S). Of course, if we

reach End on one type, we also expect to reach it on the other, since the only applicable action to

a channel of type End is close. Thus we arrive at the following subtyping rules:

S-INCONT
T ≤ U S ≤ R

?T .S ≤ ?U.R

S-OUTCONT
U ≤ T S ≤ R

!T .S ≤ !U.R

S-END

End ≤ End

The reasoning for external choice N{ℓ:Sℓ}ℓ∈L and internal choice ⊕{ℓ:Sℓ}ℓ∈L types follows

directly from this. If we interpret external choices as the input of a label k and the continuation as

Sk, we can characterize them as covariant on the set of labels and covariant on the continuations.

Conversely, if we interpret internal choices as the output of a label k and continuation as Sk, we

can characterize them as contravariant on the set of labels and covariant on the continuations.

However, this is better illustrated with an example. Suppose we’d like to encapsulate the

behavior of a client who wants to know whether a certain integer is prime. To do this, we can

design a function isPrimeClient that, given an integer n and a PrimeClient endpoint c, selects

IsPrime on c, sends n and gets back a boolean, which it returns after selecting Finish and closing

the channel:

isPrimeClient = λn : Int → λc : PrimeClient →

let s = sendn s in

let (b, s) = receive s in

close s;

b

The type of this function should then be Int
∗→ PrimeClient

∗→ Bool. Suppose, however, that we
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decide to enrich the protocol with a new option to calculate the divisors of an integer:

PrimeClient2 = µs.⊕{IsPrime: !Int.?Bool.s

,AreCoprimes: !Int.!Int.?Bool.s

,NthPrime: !Int.?Int.s

,Divisors: !Int.?List.s

,Finish:End}

Can we give function isPrimeClient an endpoint of type PrimeClient2? The naive answer would

be no: type PrimeClient2 is clearly different from type PrimeClient. Yet it is easy to see that no

communication errors can arise, since PrimeClient2 retains the options IsPrime and Finish used by

function isPrimeClient. According to Liskov’s principle of safe substitution, we should recognize

PrimeClient2 as a subtype of PrimeClient, allowing a value of the former type to be used wherever

a value of the latter type is required.

This reasoning is analogous to the one we used for record types in Section 2.3 to recognize

that {name: String, age: Int, gpa:Float} is a subtype of {name:String, age: Int}. We can thus

generalize it in a similar fashion, arriving at the following subtyping rule for internal choices.

S-INTCHOICE
K ⊆ L Sj ≤ Rj (∀j ∈ K)

⊕{ℓ:Sℓ}ℓ∈L ≤ ⊕{k:Rk}k∈K

The covariance of the continuations, described by premise Sj ≤ Rj (∀j ∈ K), is justified by the

same reasoning we outlined for the ?T .S and !T .S constructors.

We can now be more precise when assigning a type to function isPrimeClient, specifying only

the options it really needs to select: Int
∗→ µs.⊕{IsPrime: !Int.?Bool.s,Finish:End} ∗→ Bool.

Since µs.⊕{IsPrime: !Int.?Bool.s,Finish:End} is a subtype of both PrimeClient and PrimeClient2,

the type system will accept an endpoint of any of the two types as a valid argument to the function,

excluding the need to declare identical functions with different types.

Let us now give an example for external choices. Suppose we want to encapsulate the behavior

of a prime number server offering the services described by PrimeServer. We can do this with a

recursive function primeServer of type PrimeServer
∗→ {} (where the empty record {} denotes

the trivial value returned by function close):

primeServer = λs : PrimeServer
∗→ match s with {IsPrime s → let (n, s) = receive s in

let s = send (primen) s in

primeServer s

,AreCoprimes s → . . .

,NthPrime s → . . .

,Finish s → close s}
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Suppose we again enrich the protocol with a new option to calculate the divisors of an integer.

PrimeClient2 = µs.N{IsPrime: ?Int.!Bool.s

,AreCoprimes: ?Int.?Int.!Bool.s

,NthPrime: ?Int.!Int.s

,Divisors: ?Int.!List.s

,Finish:End}

Then, we must update function primeServer to account for option Divisors, and update also its

type to PrimeServer2
∗→ {}. Can we still pass it an endpoint of the original type PrimeServer?

The naive answer would be no, for PrimeServer is clearly different from PrimeServer2. Yet again

it is easy to see that no communication errors can arise if we do, since the function can still handle

all the branches of type PrimeServer. We should therefore consider PrimeServer as a subtype of

PrimeServer2.

Here too the reasoning is similar to another previous construct we have seen, namely the

variant types of Section 2.4. We can thus generalize it accordingly, arriving at the following rule

for external choices:

S-EXTCHOICE
L ⊆ K Sj ≤ Rj (∀j ∈ L)

N{ℓ:Sℓ}ℓ∈L ≤ N{k:Rk}k∈K

Note 3.4.1. The subtyping properties of regular session types were first explored by Gay and Hole

in the context of the π-calculus [42].

In the examples given thus far we gloss over subtyping for the recursive session type constructor

µs.S, which we use to build types like PrimeClient and PrimeServer. We can deal with in the

same manner we did for recursive functional types in Section 2.5: by switching to a coinductive

interpretation of the subtyping rules, and including rules to unfold the recursive types at the left

and right, as needed.4:

S-RECL
[µs.S/s]S ≤ R

µs.S ≤ R

S-RECR
S ≤ [µr.R/r]R

S ≤ µr.R

Finally, since the integration of session types in a functional setting requires introducing a distinc-

tion between linear function types T 1→ U (which must be used exactly one time) and unrestricted

function types T
∗→ U (which may be used any number of types), one might wonder how they

4In their seminal work on this topic Gay and Hole [42] give an alternative, equivalent solution. Rather than being
defined by a set of subtyping rules (as we have seen so far), their subtyping relation for recursive session types is based
on the notion of type simulation, a relation coinductively defined by means of clauses of the form “if (T,U) is in the
type simulation relation, then T and U are built using the same type constructor, and the types of certain fields of the
constructors are also in that same type simulation relation” (in the same direction for covariant fields, and in the opposite
direction for contravariant fields). Gay and Hole consider a type T to be a subtype of U if there is a type simulation
containing (T,U).
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should figure in a subtyping relation. The reasoning is quite simple: since unrestricted functions

may be used any number of times, it is safe to use them exactly one time. In other words, it is safe

to treat a function T
∗→ U as if it had type T

1→ U . To express this succintly, we can establish

a preorder on the restrictions—also known as multiplicities—of functions, established by axioms

1 ⊑ 1, ∗ ⊑ ∗ and ∗ ⊑ 1, allowing us to say that T m→ U is a subtype of T n→ U if m ⊑ n.

But this is not all. In fact, the classical subtyping properties of argument and return types

explored in Section 2.3 also apply here: it is safe to treat a function T1
∗→ U1 as if it had type

T2
1→ U2 if T2 is a subtype of T1 and if U1 is a subtype of U2. Thus we arrive at the following

subtyping rule for function types in general:

S-ARROW
T2 ≤ T1 U1 ≤ U2 m ⊑ n

T1
m→ U1 ≤ T2

n→ U2

Note 3.4.2. Multiple approaches to subtyping for regular session types have been proposed, and

they can be classified according to the objects they consider substitutable: channels versus pro-

cesses (the difference being most notable in the variance of type constructors). The earliest ap-

proach, subscribing to the substitutability of channels, is that of Gay and Hole [42]. It is also the

one we follow in our contributions. A later formulation, proposed by Carbone et al. [16], sub-

scribes to the substitutability of processes. A survey of both interpretations is given by Gay [41].

3.5 A subtyping algorithm for regular session types

To implement subtyping in the compiler for a programming language featuring regular session

types, a subtyping algorithm is necessary. In Section 2.3 above, we discuss how a subtyping

algorithm for non-recursive functional types can be derived from the subtyping rules for integers,

booleans, records and functions by reading them bottom-up. Then, in Section 2.5, we discuss how

the introduction of equirecursive types and the S-RECL and S-RECR rules requires a coinductive

interpretation to allow infinite derivations, which renders the bottom-up approach moot (because

it does not terminate for recursive types).

Since recursion is an integral part of session types, we cannot simply follow the bottom up

approach here. Instead, we must devise a way to keep derivations finite. The solution Gay and

Hole propose is to devise a different, inductive subtyping relation that is sound and complete with

respect to the coinductively defined one [42]. By sound we mean that if (T,U) is in the inductive

relation, then it is also in the coinductive one. By complete we mean that if it is in the coinductive

relation, then it is also in the inductive one.

The key to eliminating infinite derivations is to understand them: in this case, they essentially

arise from the unlimited unfolding of recursive types by the S-RECL and S-RECR rules, and

follow a regular pattern in the sense that they are rooted at a conclusion that has already appeared

somewhere down the derivation (see, for example, the derivation for InfList ≤ List in Section 2.5).

What if we “stored” these conclusions in a set of subtyping assumptions Σ (much like we store
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AS-ASSUMP
T ≤ U ∈ Σ

Σ ⊢ T ≤ U

AS-RECL
Σ, µx.T ≤ U ⊢ [µx.T/x]T ≤ U

Σ ⊢ µx.T ≤ U

AS-RECR
Σ, T ≤ µx.U ⊢ T ≤ [µx.U/x]U

Σ ⊢ T ≤ µx.U

AS-INT

Σ ⊢ Int ≤ Int

AS-RCD
K ⊆ L Σ ⊢ Sj ≤ Rj (∀j ∈ K)

Σ ⊢ {ℓ:Sℓ}ℓ∈L ≤ {k:Rk}k∈K

AS-VRT
L ⊆ K Σ ⊢ Sj ≤ Rj (∀j ∈ L)

Σ ⊢ ⟨ℓ:Sℓ⟩ℓ∈L ≤ ⟨k:Rk⟩k∈K

AS-ARROW
T2 ≤ T1 U1 ≤ U2 m ⊑ n

T1
m→ U1 ≤ T2

n→ U2

AS-END

Σ ⊢ End ≤ End

AS-INCONT
Σ ⊢ T ≤ U Σ ⊢ S ≤ R

Σ ⊢ ?T .S ≤ ?U.R

AS-OUTCONT
Σ ⊢ U ≤ T Σ ⊢ S ≤ R

Σ ⊢ !T .S ≤ !U.R

AS-INTCHOICE
K ⊆ L Σ ⊢ Sj ≤ Rj (∀j ∈ K)

Σ ⊢ ⊕{ℓ:Sℓ}ℓ∈L ≤ ⊕{k:Rk}k∈K

AS-EXTCHOICE
L ⊆ K Σ ⊢ Sj ≤ Rj (∀j ∈ L)

Σ ⊢ N{ℓ:Sℓ}ℓ∈L ≤ N{k:Rk}k∈K

Figure 3.2: Algorithmic subtyping for regular session types

typing assumptions in context Γ of the typing relation Γ ⊢ e : T ), allowing them to be proven

immediately if they appear again somewhere up the derivation? This is the basis of Gay and

Hole’s algorithmic subtyping relation, inductively defined by the rules for judgment Σ ⊢ T ≤ U

in Fig. 3.2.

With these rules, we can finally obtain an algorithm by following the usual bottom-up ap-

proach, starting at goal ⊢ T ≤ U (with an empty set of assumptions). However, since the rules

are not quite syntax directed, two additional specifications are necessary: (1) AS-Assump should

always be used if applicable (this guarantees termination), and (2) AS-RECL should be used in

preference to AS-RECR if both are applicable (the preference is arbitrary and guarantees deter-

minism).

Example 3.5.1. Using the newly defined algorithmic subtyping relation, the infinite derivation for

InfList ≤ List in Section 2.5 can be avoided by using the AS-ASSUMP rule:

. . .

InfList ≤ List ∈ InfList ≤ List, . . .

InfList ≤ List, . . . ⊢ InfList ≤ List
AS-ASSUMP

...
AS-RCD

InfList ≤ List ⊢ ⟨cons: {val: Int, rest: InfList}⟩ ≤ List
AS-RECR

⊢ InfList ≤ List
AS-RECL

Note 3.5.1. In Section 2.5 we mention how, under an equirecursive interpretation, and even with-

out subtyping, a type checker must recognize a recursive type and its unfoldings as equivalent and

interchangeable. Any valid equivalence relation is, naturally, reflexive, transitive and symmetric,
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i.e., a symmetric preorder. It is quite straightforward to derive an equivalence relation from an

existing preorder such as the subtyping relation: all we need to do is observe that two equivalent

types are simultaneously subtypes and supertypes of each other. In other words, we can derive

an equivalence relation from the more general subtyping relation, defined by T ⪋ U whenever

T ≤ U and U ≤ T . Then, even if we do not wish to support subtyping in a practical imple-

mentation, we can still use the algorithm outlined in this section to ensure that the equirecursive

interpretation is respected.

3.6 Limitations

Regular session types are limited in the protocols they can express. Suppose that we want to

specify a protocol for sending a tree of integers along a channel. The most obvious solution is

to express this using the session type !IntTree.End, where IntTree stands for the recursive variant

type µt.⟨Empty: {},Node: {left: t, value: Int, right: t}⟩.
The protocol specified by !IntTree.End exchanges a single message containing the entire tree,

which may be of any size. This, of course, is not always feasible. There are many practical scenar-

ios where the communication medium requires that messages have a limited size. In such cases, a

more sensible alternative is to break down the tree into a sequence of messages (a process known

as serialization) and send them along the channel, using choices to let the receiver know how to

put it back together. We adopt a recursive approach: to serialize an empty tree we simply select

Empty; to serialize a non-empty tree, we send the value at the root and then recursively serialize

the left and the right sub-trees (effectively performing what is known as a depth-first traversal).

We can tentatively specify this protocol using a recursive session type like the following.

SerializeTree = µs.⊕{Empty:End,Node: !Int.s.s}

However, as illustrated below, we soon run into difficulties: serialization stops midway whenever

we get to a node with no child at the left, since upon reaching End we must close the channel.

207

9

3

· ·

3

· ·

23

· ·

select Node, send 9

select Node, send 3

select Empty, close

select Node, send 207

Furthermore, SerializeTree is actually malformed, since a sequential composition of the form s.s

is not syntactically valid (according to Fig. 3.1, we should have ?T or !T before “.”, not a type

reference).

As it turns out, this constraint on the form of sequential composition is the main limitation to

the expressivity of regular session types: types may refer to themselves, but only at the last step of



Chapter 3. Regular session types 35

a sequential composition. In other words, they are restricted to tail recursion.

Note 3.6.1. An alternative to serializing a tree on a single channel is to use an inefficient delegation

technique, where, for each sub-tree, we create a new channel, send its receiving endpoint, and

serialize the sub-tree on the corresponding sending endpoint. To describe this protocol, we can

use the following session type.

SerializeTreeDeleg = µs.⊕{Empty:End,Node: !Int.!s.!s.End}

Governed by SerializeTreeDeleg, the serialization of our example tree could then proceed as illus-

trated below (where sn and rn denote the sending and receiving endpoints of the same channel).

207

9

3

· ·

3

· ·

23

· ·

(on s1) send 9, send r11, send r12, close (on s2) send 23, send r21, send r22, close

(on s11) send 3, send r111, send r112, close

(on s111) select Empty, close (on s122) select Empty, close

(on s22) select Empty, close

(on s) send 30, send r1, send r2, close

. . .

. . .

3.7 Regularity

We can be more precise about the class of protocols that regular session types are restricted to:

those corresponding to the union of regular and ω-regular languages (this is origin of their “reg-

ular” epithet). These notions originate from formal language theory, a field of linguistics and

computer science that studies languages from an abstract, formal standpoind that focuses on the

rules and patterns that describe the structure of languages, rather than their meaning.

In this field, a language can be described as a set of strings, which are sequences of symbols

(like a and b) taken from a certain set called an alphabet. A string may contain no symbols:

ε denotes the empty string. Sets {a, b} {ab, ba} and {aa, bb} are examples of languages with

alphabet {a, b}.

A language is said to be regular if it can be described by a regular expression [61, 93]5, a finite

combination of alphabet symbols and three operations that combine sub-expressions: concatena-

tion, alternation and iteration. Symbols are the simplest form of regular expressions. They denote

singleton languages (e.g., expression a describes language {a}). We can describe larger languages

by combining these expressions using the operations mentioned above.

• concatenation, written EF , describes the language obtained by joining together the strings

described by E to the strings described by F (e.g., expression ab describes language {ab});

5Alternatively and equivalently, a language is also said to be regular if all of its words can be recognized by a finite
state automaton, an abstract machine consisting of a finite set of states and transitions, that successively changes its
current state based on a string of input symbols. If at the end of the input the automaton is in an acceptance state, the
string is said to be accepted.
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• alternation, written E | F , describes the union of the languages described by E and F (e.g.,

expression a|ab describes language {a, ab});

• iteration, written E∗, describes the (infinite) union of {ε} with the languages described

by expressions E, EE, EEE... For example, the regular expression a(b | c)∗ describes

language {a, ab, ac, abb, abc, acb, acc, . . .}.

Note 3.7.1. Regular expressions are widely used in programming to describe text patterns, which

can be used to search for their ocurrences in strings or to validate text input. Despite maintaining

the “regular” name, modern regular expression engines typically include advanced features that

allow them to describe languages that are not strictly regular.

The resemblance between regular expressions and regular session types is readily seen. Intu-

itively, concatenation roughly corresponds to the ?T .S and !T .S constructors, alternation to the

⊕{ℓ:Sℓ}ℓ∈L and N{ℓ:Sℓ}ℓ∈L constructors, and iteration to the µs.S constructor, in which self-

reference s can only appear as the last step in in a type S that reaches an End (because language

strings are finite). Thus, the finite communication sequences allowed by session types correspond

to regular languages.

Yet some session types like µs.!Int.s and µs.⊕{Nil:End,Cons: !Int.s} may allow infinite com-

munication sequences that do not reach an End. Hence we must also include ω-regular lan-

guages [14], which include only infinite strings. These linguistic structures are described by ω-

regular expressions, the infinite counterpart of regular expressions that can be composed through

three operations:

• infinite iteration, written Eω where E is a regular expression, which describes ω-language

EEEEEE . . . (e.g., (a(b | c)∗)ω describes {aaa . . . , abab . . . , acac . . . , abbabb . . . , . . .}).

• left-concatenation, written EO, which prefixes the finite strings described by regular expres-

sion E to the infinite strings described by ω-regular expression O (e.g., (a | b)cω describes

{accccc . . . , bccccc . . .});6

• alternation, written O | P , which describes the union of the ω-languages described by ω-

regular expressions O and P (e.g., (a | b)ω | (ab)ω describes {aaa . . . , bbb . . . , abab . . .})

Regular and ω-regular expressions are somewhat limited in the kinds of languages they can ex-

press. In the classical formulation of the Chomsky hierarchy, which classifies language classes

according to their complexity, regular languages stand as the least complex. For example, it is

not possible to write regular expressions that specify languages as simple as “a certain number of

as followed by the same number of bs”, i.e., {ε, ab, aabb, aaabbb, aaaabbbbb, . . .}, languages of

balanced parenthesis of arbitrary depth, e.g., {ε, (), (()), ()(), (()()), ()(()()), . . .}, or a language

of strings that describe depth-first traversals of binary trees, e.g.,

{e, nee, nneee, nneenee, nnneeneenee, nnneeneenneee, nnneeneenneenee, . . .}

6The reverse operation, OE, is not well defined and therefore not addressed by ω-regular expressions.
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where, for instance, nnneeneenee describes the following traversal.7

n

n

n

e e

n

e e

n

e e

Given the correspondence between regular session types and regular languages, it is no wonder

that we cannot write a type like SerializeTree to specify the tree serialization protocol we described

above—it is an inherently non-regular communication pattern. Following the example of language

{ε, ab, aabb, . . .}, another such pattern is the sending of a certain number of integers followed by

the reception of the same number of booleans. To express these communication patterns, we need

a new formulation of session types, one that corresponds to a class of languages that stands higher

in the Chomsky hierarchy. This is where context-free session types come in.

7The underlying problem in all of these examples is, roughly stated, that regular expressions and the corresponding
automata “lack memory”. Thus, in our examples, they cannot keep track of the number of as, or open parenthesis, or
untraversed nodes.
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Chapter 4

Context-free session types

We now turn to context-free session types [2, 23, 86, 96], a more recent and expressive formulation

of session types that overcomes the limitations of regular session types identified in Section 3.6

by allowing the specification of protocols that recur at any point, or, in other words, recursive

protocols that are not limited to tail recursion.

The enhanced expressive power of context-free session types does not come without its chal-

lenges: it complicates their subtyping problem to the point of undecidability1, making it impos-

sible to design an algorithm that, given any two context-free session types S and R, is able to

correctly decide whether S is a subtype of R in a finite amount of time [82]

Despite these challenges, we were able to formulate an intuive notion of subtyping and de-

sign a sound subtyping algorithm for it. These contributions are presented in the chapters that

follow. For now, we introduce the syntax of context-free session types, identify the larger class of

protocols they allow, and, finally, explore the solutions already proposed in the literature for their

equivalence and subtyping problems.

4.1 Syntax and examples

Context-free session types overcome the limitations of regular session types by untangling sequen-

tial composition from input and output: instead of the ?T .S and !T .S constructors, we have the

standalone input ?T and output !T constructors, a general sequential composition operator S;R

(in which S and R may be arbitrary session types) and, finally, session type Skip, which represents

no action—the empty protocol. The syntax is shown in Fig. 4.1.

Together, these changes enable us to finally write a valid session type to express tree serializa-

tion on a single channel:

SerializeTree = µs.⊕{Empty:Skip,Node: !Int;s;s}

1Undecidability is predicated on how the subtyping problem is posed, i.e., on the features expected from the subtyp-
ing relation. Here we refer to a comprehensive subtyping relation, analogous to that outlined in Section 3.4, accounting
for subtyping in messages, choices and recursive types. It may be possible to design a restricted relation that remains
decidable.

39
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types T,U, V,W ::= Unit | T
m→ U | Lℓ:T Mℓ∈L | S | t | µt.T

session types S,R ::= ♯T | ⊙{ℓ:Sℓ}ℓ∈L | Skip | End | S;R | s | µs.S

restrictions m,n ::= 1 | ∗

records/variants L·M ::= {·} | ⟨·⟩

directions ♯ ::= ? | !

choices ⊙ ::= ⊕ | N

Figure 4.1: Syntax of context-free session types.

Example 4.1.1. The following tree traversal illustrates a serialization governed by the context-free

session type SerializeTree;End.

207

9

3

· ·

3

· ·

23

· ·

select Node, send 207

select Node, send 9

select Node, send 3

select Empty

select Empty select Empty

select Empty, close ✓

. . .

. . .

Example 4.1.2. A similar, more complex example that better demonstrates how expressive and

useful context-free session types can be is the serialization of data in a JSON format. The pos-

sibility of aggregating arbitrary values using objects and arrays makes JSON effectively non-

regular. We can safely serialize data in this format using an endpoint governed by the follow-

ing SerializeJSON type (which, mirroring the syntax of JSON, features two levels of recursion to

allow the list-like serialization of arrays and objects):

SerializeJSON = µs.⊕{Null: Skip

,Boolean: !Bool

, String: !String

,Number: !Float

,Array:µr.⊕{Nil:Skip,Cons: s;r}

,Object:µr.⊕{Nil: Skip,Cons: !String;s;r}}

Example 4.1.3. Since the (;) operator allows us to sequentially compose any two session types,

we can also easily express protocols to serialize two trees (SerializeTree;SerializeTree), three trees

(SerializeTree;SerializeTree;SerializeTree), an infinite sequence of trees (µs.SerializeTree;s), a

tree of trees (SerializeTreeTree = µs.⊕{Empty:Skip,Node:SerializeTree;s;s}), or even an in-

finite sequence of trees of trees (µs.SerializeTreeTree;s).
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Example 4.1.4. Naturally, context-free session types are also “backwards compatible”, in the

sense that any protocol that can be expressed through a regular session type can also be expressed

with a context-free session type. All we need to do is rewrite ♯T.S as ♯T ;S (where, according to

Fig. 4.1, ♯ stands for either ! or ?). We illustrate this by rewriting regular session types from the

previous chapter as context-free session types.

!Int;?Bool;End !Bool;(µs.?Int;s)

µs.⊕{IsPrime: !Int;?Bool;s

,NthPrime: !Int;?Int;s

,NthPrime: !Int;?Int;s

,Finish:End}

As Section 3.3 shows, in the regular setting the send and receive operations consume an endpoint

and return another endpoint with an updated type, where communication may proceed. The same

happens with context-free session types: performing send on an endpoint of type !T ;S returns an

endpoint of type S, and performing receive on an endpoint of type ?T ;S returns a value of type

T and an endpoint of type S. However, since input and output are no longer syntactically tied

to a continuation, the reader may wonder how types like !Int and ?Int “evolve”. The answer is

simple: since no further action is specified after sending or receiving, the continuation endpoints

have type Skip, the empty protocol that specifies no action. In fact, we can view Skip as being the

implicit continuation of any session type—after all, ?Int;Skip represents the same protocol as ?Int

(or ?Int;Skip;Skip, or even Skip;?Int;Skip, for that matter).

Type Skip possesses two more interesting properties: it is dual to itself (if one participant does

nothing, so does the other), and it is unrestricted (i.e., not linear). The latter property means that

an endpoint of this type may be discarded at will—after all, no operation applies to it.

Note 4.1.1. Our syntax for context-free session types does not require including End as the final

action in a protocol—meaning that endpoints may simply reach type Skip and remain unused.

Since unused channels may still consume computing resources, in practical settings it may be

wise to enforce the presence of an End for types that allow finite communication sessions. This

will ensure that their corresponding channels are eventually closed and wiped from memory.

4.2 Well-formedness

We do not consider all types generated by the grammar in Fig. 4.1 to be well-formed. Consider

session type µr.r;!Unit. No matter how many times we unfold it, we cannot resolve its first

communication action. The same could be said of µr.Skip;r;!Unit. We must therefore ensure

that any self-reference in a sequential composition is preceded by a type constructor representing

some meaningful action, i.e., not equivalent to Skip. This is achieved by adapting the conventional

notion of contractivity (no subterms of the form µx.µx1. . . . µxn.x, cf. Note 2.5.2) to account for

Skip as the identity of sequential composition.2

2This corresponds to the notion of guardedness in the theory of process algebra [47, 71].
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Type formation (inductive) ∆ ⊢ T

TF-AXIOM
T = Unit,End, Skip

∆ ⊢ T

TF-ARROW
∆ ⊢ T ∆ ⊢ U

∆ ⊢ T
m→ U

TF-RCDVRT
∆ ⊢ Tℓ (∀ℓ ∈ L)

∆ ⊢ Lℓ:TℓMℓ∈L

TF-MSG
∆ ⊢ T

∆ ⊢ ♯T

TF-CHOICE
∆ ⊢ Sℓ (∀ℓ ∈ L)

∆ ⊢ ⊙{ℓ:Sℓ}ℓ∈L

TF-SEQ

∆ ⊢ S ∆ ⊢ R

∆ ⊢ S;R

TF-VAR
X ∈ ∆

∆ ⊢ X

TF-REC
T@@✓ T contr X ∆, X ⊢ T

∆ ⊢ µX.T

Contractivity (inductive) T contr x

C-AXIOM

T = Unit, U
m→ V, Lℓ : TℓMℓ∈L,End, ♯T,⊙{ℓ:Sℓ}ℓ∈L, Skip

T contr x

C-SEQ1
S✓ R contr x

S;R contr x

C-SEQ2
S@@✓ S contr x

S;R contr x

C-VAR
y ̸= x

y contr x

C-REC
T contr x

µy.T contr x

Is-terminated (inductive) T✓

✓-SKIP

Skip✓

✓-SEQ

S✓ R✓

S;R✓

✓-SREC
S✓

µs.S✓

Figure 4.2: Type formation for context-free session types.

In addition to contractivity, we must ensure that well-formed types contain no free references.

The type formation judgement ∆ ⊢ T , where ∆ is a set of references, combines these require-

ments. It is inductively defined by the rules in Fig. 4.2. Notation ∆, x should be understood as

requiring x /∈ ∆.

4.3 Context-freedom

Context-free session types are more expressive than their regular variants, since they can express

every protocol that a regular session type can, and some more. We can make this statement more

precise by looking once again at formal language theory and observing that the protocols that can

be expressed by context-free session types correspond to a class of languages that includes regular

languages—the so-called context-free languages.

Just as regular languages can described by regular expressions, context-free language can be

described by a more powerful device: context-free grammars [93]. A context-free grammar can
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be summarized as a 4-tuple (V,Σ,P,S): a set V of symbols we call variables; a set Σ of symbols

called an alphabet (as in Section 3.7); a set P of substitution rules of the form X → α, which

we call productions, that map variables to possibly empty sequences α comprised of variables and

alphabet symbols; and a starting variable S . The following are three examples of context-free

grammars (over alphabets {a, b}, {(, )} and {e, n}, respectively):

S → aSb

S → ε

S → (S)S

S → ε

S → N

S → e

N → nSS

Such grammars can be used to generate strings of alphabet symbols and the set of all strings

generated by a grammar is said to be the language it describes. To generate a string, we begin by

writing down the starting variable S. Then, we look for a production mapping S to some α. If

α contains no variables, then it is ε or contains only alphabet symbols, and hence we consider it

a valid string. If, however, α contains variables, then for each instance of a variable X we look

for a corresponding production X → β and replace that instance of X in α with β. We do this

repeatedly until we obtain a valid string of alphabet symbols.

Note 4.3.1. Since every occurrence of a variable must be substituted until only alphabet symbols

remain, variables are also called non-terminal symbols. By the same token, alphabet symbols are

also called terminal symbols. We adopt this terminology to avoid confusion with the variables x

of the functional language in Section 2.1.

Following this procedure on the first grammar above, we can obtain string ε if we immediately

choose production S → ε on the second step. If we choose production S → aSb instead, we

are left with aSb, and must again look for a production to replace S. We can choose S → ε,

obtaining the string ab, or S → aSb, obtaining aaSbb, in which case we must replace S again.

Thus it is easy to see that the set of all strings that the first grammar can generate, i.e., the language

it describes, is {ε, ab, aabb, aaabbb, . . .}. Likewise, the languages described by the second and

third grammars are, respectively, {ε, (), (()), ()(), . . .} and {ε, e, nee, nneeee, nneenee, . . .}.

These three languages are precisely the examples of non-regular languages shown in Sec-

tion 3.7. But now, with the power of context-free session types, we can describe protocols anal-

ogous to them. For language {ε, ab, aabb, aaabbb, . . .}, consider a protocol for sending a certain

number of integers and then receiving the same number of booleans: while it cannot be described

by any regular session type, the context-free session type µs.⊕{More: !Int;s;?Bool, Stop:Skip}
works just fine. An example for {ε, (), (()), ()(), . . .} can be constructed analogously, while an

example for {ε, e, nee, nneeee, nneenee, . . .} was already shown above in Section 4.1.

Naturally, context-free grammars can also describe regular languages: observe that any regular

expression can easily be rewritten as a context-free grammar of equivalent power. For example,

the following grammar describes exactly the same language as regular expression a(b | c)∗.

S → aX X → bX X → cX X → ε
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Context-free languages in general can be quite complex, to the point of some very relevant prob-

lems being undecidable. For example, it is undecidable whether two context-free grammars gener-

ate the same language (the language equivalence problem), or if the language generated by one is

contained in the language generated by another (the language inclusion problem) [93]. If context-

free session types corresponded to context-free languages in general, this would mean that their

equivalence, i.e., whether two types represent the same protocol, was undecidable. Fortunately,

this is not the case.

It is a well known result in formal language theory that any context-free grammar can be

transformed into an equivalent grammar in which every production has the form X → aZ⃗, where

a is a terminal symbol and Z⃗ a sequence of non-terminal symbols—this is known as a grammar in

Greibach Normal Form (GNF) [46]. Furthermore, context-free session types are deterministic: for

every communication action, there is only one possible continuation. This makes them coincide

with GNF grammars where, for each non-terminal symbol X and terminal symbol a, there is at

most one production of the form X → aZ⃗. When a context-free grammar in GNF obeys this

condition, it is said to be simple [62]

Simple context-free grammars, unlike their unqualified counterparts, exhibit a very useful

property: they have a decidable language equivalence problem—in other words, it is possible

to design an algorithm that, given two simple grammars, is always able to correctly answer, in a

finite amount of time, whether they generate the same language [62]. The more general language

inclusion problem, however, remains undecidable—there is no algorithm that, given two simple

grammars, can correctly answer, in a finite amount of time, wether the language generated by one

of them is contained in the language generated by the other [38]. These two properties of simple

grammars are, as it turns out, crucial for the theory of context-free session types. Their relevance

is made clearer in the following sections.

4.4 Algebraic properties

Can two syntactically different context-free session types represent the same communication pat-

tern? Section 2.5 mentions how equirecursion complicates the type equivalence problem by mak-

ing recursive types and their unfoldings semantically equivalent. Sections 3.4 and 3.5 further show

how this issue generalizes to subtyping in the regular setting, and how it can be dealt with using a

sound and complete algorithm based on modified subtyping rules.

Context-free session types, by virtue of their generalized sequencing operator (;), complicate

this further: even without recursion, they make it possible to represent the same sequential com-

position of actions in a myriad of ways. To be more specific, this operator exhibits four important

algebraic properties: identity, associativity, distributivity and absorption. Since any sensible sub-

typing (or, for that matter, equivalence) relation should respect these properties, it may be useful

to briefly survey them.

Identity As Section 4.1 exemplifies, types Skip;S, S;Skip and S are all represent the same com-
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munication pattern. In algebraic terms, we can say Skip is the neutral or identity element of

sequential composition.3

Associativity With the regular session type syntax, there is no ambiguity about the grouping of

session type constructors in a type without parenthesis such as !Int.?Bool.End—the only

possibility is !Int.(?Bool.End). In the context-free setting, this is no longer the case: we

could parse type !Int;?Bool;End as either !Int;(?Bool;End) or (?Int;?Bool);End. By con-

vention, we default to the former interpretation, but we observe that it should not really

matter: both readings denote exactly the same protocol (send an integer, receive a boolean,

and close the channel). We further observe that this is true in general: for any session types

S1, S2, and S3, type S1;(S2;S3) denotes the same protocol as (S1;S2);S3. In other words,

we may rearrange the order in which we apply sequential composition, as long as the order

of the composed types appear does not change. In algebraic terms, we say that the sequential

composition operator is associative.4

Distributivity In the regular setting, internal and external choice types admit no continuation; all

possible remaining actions in the protocol are contained in their fields. This is no longer

true for context-free session types, as their general sequencing operator enables any type to

have a continuation. For choice types, the continuation is reached after the actions speci-

fied in each field are complete. For example, in type ⊕{A: !Int,B: ?Bool};End, we reach

End after selecting A and sending an integer, or after selecting B and receiving a boolean.

It would make no difference, then, to rewrite this type as ⊕{A: !Int;End,B: ?Bool;End}.

More generally, any type of the form ⊙{ℓ:Sℓ}ℓ∈L;R denotes exactly the same protocol as

⊙{ℓ:Sℓ;R}ℓ∈L. Note, however, that this is not true of we reverse the order of operations:

R;⊙{ℓ:Sℓ}ℓ∈L is quite different from ⊙{ℓ:R;Sℓ}ℓ∈L, since in the latter a choice must be

selected before reaching R. For this reason, we say that sequential composition distributes

to the right over internal and external choice.5

Absorption Type End represents the closing of a channel, which prevents any further commu-

nication from taking place. What should we make of a type like End;!Int, then? From the

point of view of a process, this type means exactly the same thing as End: a channel must be

closed and not used further. This is, of course, true in general: End nullifies its continuation,

whatever it may be. For any type S, in End;S is equivalent to End. In algebraic terms, we

say that End is the left-absorbing element of sequential composition.6

3For comparison: in arithmetic, 1 is the identity element of multiplication (1×x = x×1 = x), and 0 is the identity
element of addition (0 + x = x+ 0 = x).

4For comparison: in real number arithmetic, both addition and multiplication are associative operations, since both
a+(b+ c) = (a+ b)+ c and a× (b× c) = (a× b)× c hold for any a,b and c. The same cannot be said of subtraction,
for example, since a− (b− c) = (a− b)− c is not generally true.

5For comparison: in real number arithmetic, division distributes to the right over addition, since (a + b) ÷ c =
(a÷ c)+ (b÷ c) holds for any a,b and c with c ̸= 0. Like sequential composition, it also does not distribute to the left,
since a÷ (b+ c) = (a÷ b) + (a÷ c) is not generally true.

6For comparison: in real number arithmetic, 0 is a left-absorbing element of multiplication, since, for any a, it holds
that 0× a = 0.
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4.5 Equivalence

Before looking at the subtyping problem in its full generality, it might be useful to understand a

more specific (and tractable) instance of it—type equivalence—as its solution contains the tools

we will need in the following chapters.

Two session types are considered equivalent if they describe exactly the same communica-

tion actions, even if they are not identical syntactically. The previous section provides multiple

examples of this: for instance, Skip;S and S for any S. How can we capture this notion more

precisely? One possible answer, given by Costa et al. [23], is to define an equivalence relation ≃
between types by means of inference rules, much like we have done thus far for subtyping. The

rules definining this relation, adapted to our formulation of context-free session types, are given

in Fig. 4.3. Our adaptations, highlighted in the figure, concern the recursion operator µ, linear

functions, and the End type, which are not present in the session type language of Costa et al.7

Summarizing the figure, a rule is included for each type constructor. For nullary constructors,

this takes the form of a reflexive axiom (E-UNIT, E-SKIP and E-END), while for constructors

of greater arity the rules include premises requiring equivalence at every field of the construc-

tor (E-ARROW, E-RCDVRT, E-MSG, and E-CHOICE). The exceptions to this general outline

are the µ and (;) constructors. We treat the former as we have done in previous chapters, i.e.,

by including two rules to unfold the type at the premises, E-RECL and E-RECR (which require a

coinductive interpretation). The (;) constructor, however, merits special treatment: its rules should

account for identity, associativity, distributivity and absorption. Thus we include, for each session

type constructor S, a left-hand rule with a conclusion of the form S;R ≤ S′ (E-MSGSEQ1L, E-

CHOICESEQL, E-SKIPSEQL, E-ENDSEQ1L, E-SEQSEQL and , E-RECSEQL) and a right-hand

rule with a conclusion of the form S′ ≤ S;R (E-MSGSEQ1R, E-CHOICESEQR, E-SKIPSEQR,

E-ENDSEQ1R, E-SEQSEQR and , E-RECSEQR). An additional rule is necessary for each con-

structor over which sequential composition does not distribute or identify (S-MSGSEQ2 and S-

ENDSEQ2). It can be shown that the relation defined by these rules satisfies the properties of

reflexivity, transitivity and symmetry expected from an equivalence relation [23].

Despite providing a clear formulation of equivalence, these rules do not suggest an immedi-

ate algorithm. The reason for this is, much like in the regular setting (Section 3.4), the inclu-

sion of the E-RECL, E-RECR, E-RECSEQL and E-RECSEQR rules, which force us to adopt a

coinductive interpretation to accept infinite derivations as valid. And while in the regular set-

ting the tail-recursive structure of session types ensures that the infinite branches of a deriva-

tion follow a cyclic pattern, in the context-free setting this is no longer the case: non-tail re-

cursion allows types to grow along the infinite branches of a derivation. As such, these infinite

derivations cannot be captured by enriching the equivalence judgment with a context of equiv-

alence assumptions, as we did for algorithmic subtyping. Take, as an example, the derivation

7Instead of the usual µ representation for recursive types, the original system relies on type variables defined by
possibly recursive systems of equations; we opted for the µ operator approach because it is more closely aligned with
programming language literature and implementation.
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Equivalence (coinductive) T ≃ T

E-UNIT

Unit ≃ Unit

E-ARROW
U1 ≃ T1 T2 ≃ U2

T1
m→ T2 ≃ U1

m→ U2

E-RCDVRT
Tk ≃ Uk (∀k ∈ L)

Lℓ:TℓMℓ∈L ≃ Lℓ:UℓMℓ∈L

E-RECL
[µx.T/x]T ≃ U

µx.T ≃ U

E-RECR
T ≃ [µx.U/x]U

T ≃ µx.U

E-MSG
T ≃ U

♯T ≃ ♯U

E-CHOICE
Sk ≃ Rk (∀k ∈ L)

⊙{ℓ:Tℓ}ℓ∈L ≃ ⊙{ℓ:Uℓ}ℓ∈L

E-SKIP

Skip ≃ Skip

E-END

End ≃ End

E-MSGSEQ1L
T ≃ U S ≃ Skip

♯T ;S ≃ ♯U

E-MSGSEQ1R
T ≃ U S ≃ Skip

♯T ≃ ♯U ;S

E-MSGSEQ2
T ≃ U S ≃ R

♯T ;S ≃ ♯U ;R

E-CHOICESEQL
⊙{ℓ:Sℓ;S}ℓ∈L ≃ R

⊙{ℓ:Sℓ}ℓ∈L;S ≃ R

E-CHOICESEQR
S ≃ ⊙{ℓ:Rℓ;R}ℓ∈L
S ≃ ⊙{ℓ:Rℓ}ℓ∈L;R

E-SKIPSEQL
S ≃ R

Skip;S ≃ R

E-SKIPSEQR
S ≃ R

S ≃ Skip;R

E-ENDSEQ1L
End;S ≃ End

E-ENDSEQ1R
End ≃ End;R

E-ENDSEQ2
End;S ≃ End;R

E-SEQSEQL
S1;(S2;S3) ≃ R

(S1;S2);S3 ≃ R

S-SEQSEQR
S ≃ R1;(R2;R3)

S ≃ (R1;R2);R3

S-RECSEQL
([µs.S1/s]S1);S2 ≃ R

(µs.S1);S2 ≃ R

S-RECSEQR
S ≃ ([µs.R1/s]R1);R2

S ≃ (µs.R1);R2

Figure 4.3: Equivalence for context-free session types.

for SerializeTree ≃ SerializeTree′, where SerializeTree = µs.⊕{Empty:Skip,Node: !Int;(s;s)}
and SerializeTree′ = µr.⊕{Empty:Skip,Node: (!Int;r);r}: by applying the rules for recursion,

we must eventually derive SerializeTree;SerializeTree ≃ SerializeTree′;SerializeTree for which

having SerializeTree ≃ SerializeTree′ as an assumption in the context would be of no avail.

How, then, can we decide whether two types are equivalent? The solution, as initially proposed

by Thiemann and Vasconcelos [96] and given an algorithm by Almeida et al. [5], is to look at the

semantics of session types, rather than their syntax. In other words, we must look at the behaviors

they represent—the interactions they allow—rather than at how they are constructed.

Labelled transition systems (LTSs) are a suitable formalism for this purpose: they succinctly

represent discrete systems as a set of states S, together with the set of actions allowed in the system

A, and a transition relation R ⊆ S×A×S that maps a state to another through some action. If we

interpret session types S as the states of an LTS, then the interactions they permit (e.g., selecting a

choice ℓ) correspond the actions a allowed by the system, which can be represented with dedicated

symbols (e.g., ⊕ℓ). Fig. 4.4 shows the grammar of actions we consider8. To define the transition

8Letters d, r, p, c in actions stand for “domain”, “range”, “payload” and “continuation”.
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Transition relation T
a−→ T

L-UNIT

Unit
Unit−→ Skip

L-ARROWDOM

(T
m→ U)

→d−→ T

L-ARROWRNG

(T
m→ U)

→r−→ U

L-LINARROW

(T
1→ U)

→1−→ Skip

L-RCDVRTFIELD
k ∈ L

Lℓ:TℓMℓ∈L
LMk−→ Tk

L-RCDVRT

Lℓ:TℓMℓ∈L
LM−→ Skip

L-REC

[µx.T/x]T
a−→ U

µx.T
a−→ U

L-MSG1

♯T
♯p−→ T

L-MSG2

♯T
♯c−→ Skip

L-CHOICE

⊙{ℓ:Sℓ}ℓ∈L
⊙−→ Skip

L-CHOICEFIELD
k ∈ L

⊙{ℓ:Sℓ}ℓ∈L
⊙k−→ Sk

L-END

End
End−→ Skip

L-MSGSEQ1

♯T ;S
♯p−→ T

L-MSGSEQ2

♯T ;S
♯c−→ S

L-CHOICESEQ

⊙{ℓ:Sℓ}ℓ∈L;R
⊙−→ Skip

L-SKIPSEQ

S
a−→ T

Skip;S
a−→ T

L-ENDSEQ

End;S
End−→ Skip

L-SEQSEQ

S1; (S2;S3)
a−→ T

(S1;S2);S3
a−→ T

L-CHOICEFIELDSEQ

k ∈ L

⊙{ℓ:Sℓ}ℓ∈L;R
⊙k−→ Sk;R

L-RECSEQ

([µs.S/s]S);R
a−→ T

(µs.S);R
a−→ T

(no rule for Skip)

actions a ::= Unit |→d |→r | →1 | LMℓ | LM | End | ♯p | ♯c | ⊙ | ⊙ℓ

Figure 4.4: Labelled transition system for context-free session types.

relation, which we write as T
a−→ U , we resort once again to inference rules, also shown in

Fig. 4.4. By also attributing “behaviour” to functional types, we allow them to be seamlessly

integrated in the semantic equivalence relation.

Note 4.5.1. Besides the adaptations required by our type language (L-LINARROW, L-RCDVRT,

L-REC, L-END, L-ENDSEQ and L-RECSEQ, highlighted), which are analogous to those made

to the rules in Fig. 4.3, the LTS of Costa et al. requires one correction. By making the behavior

of records, variants and choices entirely dependent on their labels, the LTS attributes no behavior

to {} and ⟨⟩, leaving these types undistinguishable from each other and from Skip. To solve

this problem, we modify the our LTS to include a default transition for every labelled type (L-

RCDVRT, L-CHOICE and L-CHOICESEQ, highlighted).

With the behavior of types established, it becomes straightforward to define an equivalence
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relation on them: two types are equivalent if their behavior—the sequences of actions they allow,

and their branching points—cannot be distinguished. In the literature, this is known as bisimilar-

ity [88], and can be defined (coinductively) as follows.

Definition 4.5.1 (Bisimulation and bisimilarity). A binary relation on types R is said to be a

bisimulation if, whenever T R U , we have:

1. for each a and T ′ with T
a−→ T ′, there is U ′ such that U a−→ U ′ with T ′ R U ′;

2. for each a and U ′ with U
a−→ U ′, there is T ′ such that T a−→ T ′ with T ′ R U ′.

Bisimilarity, written ∼, is the union of all bisimulations. We say that a type T is bisimilar to type

U if T ∼ U .

It is straightforward to show that bisimilarity satisfies the properties of reflexivity, symmetry

and transitivity expected from an equivalence relation [88]. Furthermore, it can be shown that

∼ coincides with ≃, i.e., that T ∼ U ⇐⇒ T ≃ U .

This definition tells us that to determine whether types T and U are equivalent, it suffices

to show that there exists a bisimulation R such that T R U . For example, we can show that

⊕{A: Skip,B: ?Bool};End ≃ ⊕{A:End,B: ?Bool;End} by constructing the set

{(⊕{A:Skip,B: ?Bool};End,⊕{A:End,B: ?Bool;End})

, (Skip;End,End), (?Bool;End, ?Bool;End), (Bool,Bool), (End,End)},

which can be easily shown to be a bisimulation. Finding such bisimulations algorithmically is

easy enough for non-recursive types. However, we once again run into problems when dealing

with recursive types: instead of the infinite derivations required to prove the judgements of the

syntactic relation, a type equivalence algorithm now needs to find infinite bisimulations, as is the

case of that which is needed to show that SerializeTree ∼ SerializeTree′.

How, then, can an algorithm decide whether any two types are bisimilar with a finite amount of

time and memory? This is where the simple grammars introduced in the Section 4.3 come in: it is

well-known that the bisimilarity is decidable for simple grammars [20] and for the corresponding

class of context-free processes [20]. These results hinge on the fact that it is possible to represent

an infinite bisimulation finitely, by decomposing its pairs into “smaller” pairs such that only finitely

many indecomposible pairs remain. Exploiting this property of bisimilarity, and building on the

work of Jančar and Moller [58], Almeida et al. [5] developed a sound and complete algorithm to

decide the bisimilarity of context-free session types. Succinctly, it works by first translating the

types to a simple grammar, then pruning it by removing unnecessary words and productions, and

finally attempting to build a finite representation of a bisimulation by exploring the transitions of

the starting words through an expansion tree.

The type bisimilarity algorithm of Almeida et al. is the basis for our subtyping algorithm,

which we develop in Chapter 6. Since both algorithms share the same basic structure, we re-

frain going into details here; we point out the differences between them when introducing ours in

Chapter 6.
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4.6 Undecidability of subtyping

We are finally ready to tackle our main problem, that of subtyping for context-free session types.

We are not, however, the first to approach it: in his work on type inference in the presence of

context-free session types, Padovani also proposed a subtyping relation, which he used to induce

an equivalence relation (cf. Note 3.5.1). This relation is, however, somewhat limited, not account-

ing for subtyping in messages or, for that matter, functional types. Despite its limitations, this

relation was enough for Padovani to obtain a crucial result, one that places a fundamental limita-

tion on the applicability of our work: the undecidability of subtyping, in the classical style of Gay

and Hole, for context-free session types. We finish this chapter by briefly reviewing Padovani’s

subtyping relation and the proof of its undecidability.

Before addressing subtyping, we must point out that Padovani’s system does not use explicit

syntax (like the µ constructor) for recursive types. Instead, the metavariables for types range

over the possibly infinite regular trees generated by the type constructors, and recursive types are

introduced as the solutions of finite systems of equations like

Stree = ⊕{Empty: Skip,Node: !Int;Stree;Stree},

where Stree appears unguarded on the left-hand side and guarded by at least one constructor on

the right-hand side, guaranteeing exactly one solution. We adopt this method in this section to

reproduce the proof of undecidability more faithfully.

Like the semantic equivalence relation in the previous section, Padovani’s subtyping relation

is also based on an LTS, albeit a different one. As shown in Fig. 4.5, this LTS only distinguishes

between four kinds of actions: sending a message of type T (!T ), receiving a message of type T

(?T ), sending a label (!k) and receiving a label (?k). Furthermore, in the transitions for message

types (LP-MSG), the payload type is part of the transition label itself, and, as such, its behavior

is not accounted for in the transition relation. While this greatly simplifies the LTS, it also means

that the resulting subtyping relation cannot express the costumary co/contravariance in messages

types (cf. Section 3.4)—in fact, this requires the corresponding message types in the subtype and

supertype to be not merely equivalent, but syntactically identical.9

Definition 4.6.1 (Padovani’s subtyping relation). Padovani’s subtyping relation, written ≲P is

defined as the largest binary relation on types such that S ≲P R implies one of the following:

• S✓ and R✓;

• S@@✓ , R@@✓ and there are no a, S′, b, R′ such that S a−→ S′ and R
b−→ R′;

• for each ω and each S′ with S
?ω−→ S′, there is R′ such that R ?ω−→ R′ and S′ ≲P R′;

• for each ω and each R′ with R
!ω−→ R′, there is S′ such that S !ω−→ S′ and S′ ≲P R′.

While ≲P does not allow co/contravariance in messages, it does allow it in internal and external

choices. Thus, Stree ≲P ⊕{Empty: Skip} holds, while ?(Stree) ≲P ?(⊕{Empty: Skip}) does not.
9Padovani’s work builds on Thiemann and Vasconcelos’ original, first-order presentation of context-free session

types [96], whose LTS also does not inspect the structure of message types. The later work by Costa et al. on higher-
order context-free session types enables this inspection [23].
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Transition relation T
a−→ T

LP-MSG

♯T
♯T−→ Skip

LP-EXTCHOICE
k ∈ L

N{ℓ:Sℓ}ℓ∈L
?k−→ Sk

LP-INTCHOICE
k ∈ L

⊕{ℓ:Sℓ}ℓ∈L
!k−→ Sk

LP-SEQ1
S

a−→ S′

S;R
a−→ S′;R

LP-SEQ2
S✓ R

a−→ R′

S;R
a−→ R′ (no rule for Skip or End)

message types ω ::= T | ℓ
actions a ::= ♯ω

Figure 4.5: Padovani’s labelled transition system for context-free session types.

Despite this limitation (for which we propose a solution in the following chapter), relation ≲P

is expressive enough to allow us to formulate the inclusion problem for simple languages in its

terms. In other words, we can show that if we are able to decide whether any two session types are

related by ≲P, then we are also able to decide whether a simple language includes another (i.e.,

L(G1) ⊆ L(G2) for simple grammars G1 and G2) 10. Given that, as mentioned above, the inclusion

problem for simple languages is undecidable, it follows that relation ≲P (and any relation that

includes it) must also be undecidable.

To demonstrate this, Padovani devised a way to encode any simple grammar G = (V,Σ,P,S)
into a corresponding session type st(G), such that the language generated by G coincides with the

complete traces, or sequences of actions, allowed by the LTS starting at st(G). Assuming, without

loss of generality, that V = {X1, . . . , Xn}, Σ = {ℓ1, . . . , ℓm}, S = X1, it is possible to define the

following finite system of equations:

Xi = N{ℓ:Y1;. . .;Yk}Xi→ℓY1...Yk∈P (1 ≤ i ≤ n)

By appealing to Courcelle [24], Padovani deduces that this system must have a unique solution

{X1 → S1, . . . , Xn → Sn} and identifies st(G) with S1, the type corresponding to the starting

non-terminal of G. From this, it is simple to show that

st(G) ?ℓ1−→ . . .
?ℓk−→ Skip ⇐⇒ ℓ1 . . . ℓk ∈ L(G).

Suppose now that st(G1) ≲P st(G2): since the external choices that form these types are covariant

on width, the traces of st(G1) may omit entire branches from those of st(G2). Thus, given the

correspondence between session type traces and language words, it is easy to demonstrate that

st(G1) ≲P st(G2) ⇐⇒ L(G1) ⊆ L(G2),

10In computability terms, we say that inclusion between simple languages is reducible to subtyping for context-free
session types.
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which completes the proof.

This unfortunate result places a fundamental restriction on any implementation of subtyping

(in the classical style of Gay and Hole) for context-free session types, leaving language design-

ers with two options: either restrict the the subtyping relation to a decidable but less expressive

approximation, or design an incomplete subtyping algorithm.

In his work, Padovani took the first route, leveraging the subtyping features of the imple-

mentation language (OCaml) to provide this approximation. Our goal, however, is to achieve an

even more expressive notion of subtyping than Padovani’s, one that features co/contravariance in

message types while also accommodating functional types. Our only choice, then, is to follow

alternate path. Our journey begins in the next chapter, in which we develop our subtyping relation.

4.7 Related work

Context-free session types have seen considerable development since their introduction, most no-

tably their integration in System F [2, 86], an higher-order formulation [23], as well as proposals

for kind and type inference [3, 82]. To the best of our knowledge, the only work on subtyping for

these types before our work is that of Padovani [82].

Much of the work on equivalence for these types rests on results from the theories of formal

languages, automata and process algebra. On these topics, several algorithms have been pro-

posed to check the equivalence of their central objects of study. On the topic of automata, Henry

and Sénizergues [48] proposed an algorithm to decide the language equivalence problem on de-

terministic pushdown automata (which recognize deterministic context-free languages). On the

related topic of basic process algebra (BPA), BPA processes have been shown to be equivalent

to grammars in GNF [9], of which simple grammars are a particular case. This makes results

and algorithms for BPA processes applicable to grammars in GNF, and vice-versa. A bisimilarity

algorithm for general BPA processes, of doubly-exponential complexity, has been proposed by

Burkart et al. [15], while an analogous polynomial-time algorithm for the special case of normed

BPA processes has been proposed by Hirschfield et al. [49].

Context-free session types are not the only formulation of session types that go beyond the

regular realm. Das et al. [27] introduce nested session types, which extend regular session types

with parameterized type definitions, resulting in a system that is strictly more expressive than

context-free session types. Like their context-free counterparts, nested session types exhibit a

decidable equivalence problem and an undecidable subtyping problem, for which there is a sound

but incomplete algorithm [28].
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Subtyping context-free session types

Equipped with an understanding of typing and subtyping in general, as well as context-free session

types in particular, we are now ready to present our contributions, which will be the focus of the

remaining chapters.

Besides this thesis, our work has resulted in two publications: a conference paper [90] (accom-

panied by a technical report [91]), presented at CONCUR 2023, the 34th International Conference

on Concurrency Theory in Antwerp, Belgium, and an extended abstract [92], presented at INFo-

rum 2023, Simpósio de Informática in Porto, Portugal.

In this chapter, we begin by introducing our two coinciding notions of syntactic and semantic

subtyping for context-free session types, the latter of which we use as a stepping stone to develop

a subtyping algorithm in the next chapter.

5.1 A syntactic subtyping relation

Following the previous chapter, our first attempt at formalizing a notion of subtyping for context-

free session types takes a syntactic approach. We characterize syntactic subtyping as a relation

defined by a collection of inference rules with a coinductive interpretation, shown in Figure 5.1.

We obtain these rules by modifying the equivalence rules of Costa et al. [23], previously shown in

Fig. 4.3 and already adapted to account for multiplicity-annotated functions, the explicit recursion

operator µ and the left-absorbing End type that were not present in their type language.

More concretely, besides renaming the rules and denoting the new relation with the ≤ sym-

bol, we replace E-ARROW with S-ARROW (allowing multiplicity subtyping), E-RCDVRT with

S-RCD and S-VRT, E-MSG with S-In and S-Out, and E-CHOICE with S-EXTCHOICE and S-

INTCHOICE, establishing the classical subtyping properties associated with both functional types

and session types we saw throughout Sections 2.3 and 3.4. Additionally, we replace E-MSGSEQ1L

with S-INSEQ1L and S-OUTSEQ1L, E-MSGSEQ1R with S-INSEQ1R and S-OUTSEQ1R, and

finally E-MSGSEQ2 with S-INSEQ2 and S-OUTSEQ2, thus ensuring that subtyping is compatible

the identity, associativity, distributivity and absorption properties of the ; operator.

It is easy to see how these changes do not preserve the symmetry of the original relation, but a

coinductive argument shows that both reflexivity and transitivity are maintained.

53
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Syntactic subtyping (coinductive) T ≤ T

S-UNIT

Unit ≤ Unit

S-ARROW
U1 ≤ T1 T2 ≤ U2 m ⊑ n

T1
m→ T2 ≤ U1

n→ U2

S-RCD
K ⊆ L Tj ≤ Uj (∀j ∈ K)

{ℓ:Tℓ}ℓ∈L ≤ {k:Uk}k∈K

S-VRT
L ⊆ K Tj ≤ Uj (∀j ∈ L)

⟨ℓ:Tℓ⟩ℓ∈L ≤ ⟨k:Uk⟩k∈K

S-RECL
[µx.T/x]T ≤ U

µx.T ≤ U

S-RECR
T ≤ [µx.U/x]U

T ≤ µx.U

S-IN
T ≤ U

?T ≤ ?U

S-OUT
U ≤ T

!T ≤ !U

S-EXTCHOICE
L ⊆ K Sj ≤ Rj (∀j ∈ L)

N{ℓ:Sℓ}ℓ∈L ≤ N{k:Rk}k∈K

S-INTCHOICE
K ⊆ L Sj ≤ Rj (∀j ∈ K)

⊕{ℓ:Sℓ}ℓ∈L ≤ ⊕{k:Rk}k∈K

S-SKIP

Skip ≤ Skip
S-END

End ≤ End

S-INSEQ1L
T ≤ U S ≤ Skip

?T ;S ≤ ?U

S-INSEQ1R
T ≤ U S ≤ Skip

?T ≤ ?U ;S

S-INSEQ2
T ≤ U S ≤ R

?T ;S ≤ ?U ;R

S-OUTSEQ1L
U ≤ T S ≤ Skip

!T ;S ≤ !U

S-OUTSEQ1R
U ≤ T S ≤ Skip

!T ≤ !U ;S

S-OUTSEQ2
U ≤ T S ≤ R

!T ;S ≤ !U ;R

S-CHOICESEQL
⊙{ℓ:Sℓ;S}ℓ∈L ≤ R

⊙{ℓ:Sℓ}ℓ∈L;S ≤ R

S-CHOICESEQR
S ≤ ⊙{ℓ:Rℓ;R}ℓ∈L
S ≤ ⊙{ℓ:Rℓ}ℓ∈L;R

S-SKIPSEQL
S ≤ R

Skip;S ≤ R

S-SKIPSEQR
S ≤ R

S ≤ Skip;R

S-ENDSEQ1L
End;S ≤ End

S-ENDSEQ1R
End ≤ End;R

S-ENDSEQ2
End;S ≤ End;R

S-SEQSEQL
S1;(S2;S3) ≤ R

(S1;S2);S3 ≤ R

S-SEQSEQR
S ≤ R1;(R2;R3)

S ≤ (R1;R2);R3

S-RECSEQL
([µs.S1/s]S1);S2 ≤ R

(µs.S1);S2 ≤ R

S-RECSEQR
S ≤ ([µs.R1/s]R1);R2

S ≤ (µs.R1);R2

Preorder on multiplicities m ⊑ m

m ⊑ m ∗ ⊑ 1

Figure 5.1: Syntactic subtyping for context-free session types.

Theorem 5.1.1. The syntactic subtyping relation ≤ is a preorder on types.

The details of the proof can be consulted in the appendices: Appendix A lays the groundwork

(for this, as well as most subsequent proofs), while Appendix B presents the argument itself.

Example 5.1.1. Recall the type SerializeTree = µs.⊕{Empty: Skip,Node: !Int;s;s}, which de-

scribes the serialization of an arbitrary binary tree. Suppose now the following types, which
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describe the serialization of full trees of successively greater heights:

SerializeEmpty = ⊕{Nil: Skip}

SerializeFullTree0 = ⊕{Node:SerializeEmpty;!Int;SerializeEmpty}

SerializeFullTree1 = ⊕{Node:SerializeFullTree0;!Int;SerializeFullTree0}
...

SerializeFullTreen = ⊕{Node:SerializeFullTreen−1;!Int;SerializeFullTreen−1}

By the principle of safe substitution, SerializeTree should be a subtype of SerializeEmpty and

SerializeTreen for any n—after all, the ability to serialize an arbitrary tree presupposes the ability

to serialize the empty tree, as well as full trees of any height. To confirm that SerializeFullTree ≤
SerializeFullTreen holds, for any n, we unfold the left-hand side using S-RECL and apply S-

INTCHOICE. Then we apply the distributivity rules S-CHOICESEQL and S-CHOICESEQR as

necessary, until reaching a judgement of the form ⊕{ℓ:Sℓ}ℓ∈L ≤ ⊕{k:Rk}k∈K , at which point

we can apply S-INTCHOICE again, or until reaching a type with !Int at the head, at which point

we apply S-INSEQ2. We repeat this process until reaching SerializeTree ≤ SerializeFullTreen−1,

and proceed similarly until reaching SerializeTree ≤ SerializeEmpty, which follows from S-

INTCHOICE and S-SKIP.

Despite offering a clear presentation of the features of the subtyping relation, our syntactic

rules, like those of the equivalence relation upon which they are based, suggest no obvious algo-

rithmic intepretation: on the one hand, the bare metavariables in rules S-RECL, S-CHOICESEQL,

S-RECSEQL and their right-hand counterparts makes the system not syntax-directed; on the other

hand, rules S-RECL, S-RECSEQL and their right-hand counterparts lead to infinite derivations

which are not solvable by conventional means. Following the work on type equivalence, the next

section explores an alternative semantic approach, which we then use as a stepping stone to de-

velop our subtyping algorithm.

5.2 A semantic subtyping relation

As mentioned in the previous chapter, semantic equivalence for context-free session types is usu-

ally based on observational equivalence or bisimilarity, meaning that two session types are con-

sidered equivalent if they exhibit exactly the same communication behaviour [96]. An analogous

notion of semantic subtyping should therefore rely on an observational preorder, where subtypes

may omit certain behaviors or exhibit additional ones when compared to the supertype. We now

look for such a preorder, taking our adaptation of the LTS of Costa et al., previously shown in

Fig. 4.4, as the basis for the behavior of types.

Several notions of observational preorder have been explored in the literature, with studies

dating back from the 70s (Sangiorgi provides a gentle introduction to the topic [88]). The simplest

of these notions is, arguably, similarity [69, 83]. Its definition resembles that of bisimilarity, but

with a single clause.
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Definition 5.2.1. A type relation R is said to be a simulation if, whenever TRU , for all a and T ′

with T
a−→ T ′, there is U ′ such that U a−→ U ′ and T ′RU ′

Similarity, written ⪯, is the union of all simulation relations. We say that a type U simulates

type T if T ⪯ U .

Unfortunately, plain similarity cannot be identified with semantic subtyping. A small example

demonstrates why: type ⊕{A:End,B:End} both simulates and is a subtype of ⊕{A:End}, while

type N{A:End} does not simulate yet is a subtype of N{A:End,B:End}. An “anti-simulation”

relation, based on the converse clause, would be of no use either, as it would simply leave us with

the converse problem.

It is apparent that a more refined notion of simulation is necessary, where the direction of the

implication depends on the transition labels. Fortunately, Aarts and Vaandrager provide just such

a notion in the form of XY-simulation [1], a simulation relation parameterized by two subsets

of actions, X and Y , such that actions in X are simulated from left to right and those in Y are

simulated from right to left, selectively combining the requirements of simulation and reverse

simulation.

Definition 5.2.2. Let X ,Y ⊆ A. A type relation R is said to be an XY-simulation if, whenever

TRU , we have:

1. for each a ∈ X and each T ′ with T
a−→ T ′, there is U ′ such that U a−→ U ′ with T ′RU ′;

2. for each a ∈ Y and each U ′ with U
a−→ U ′, there is T ′ such that T a−→ T ′ with T ′RU ′.

XY-similarity, written ⪯XY , is the union of all XY-simulation relations. We say that a type T is

XY-similar to type U if T ⪯XY U .

Similar or equivalent notions have appeared throughout the literature: modal refinement [64],

alternating simulation [6] and, perhaps more appropriately named (for our purposes), covariant-

contravariant simulation [35]. Padovani’s original subtyping relation for first-order context-free

session types [82], seen in the previous chapter, can also be understood as a refined form of XY-

simulation.

We can tentatively define a semantic subtyping relation ≲′ as XY-similarity, where X and Y
are the label sets generated by the following grammars for aX and aY , respectively.

aX ::= aXY | ⟨⟩ℓ | Nℓ

aY ::= aXY |→1 | {}ℓ | ⊕ℓ

aXY ::= Unit |→d |→r | LM | ♯p | ♯c | ⊙ | End

This would indeed give us the desired result for our previous example, but we still cannot account

for the contravariance of output and function types: we want T = !{A: Int} to be a subtype of

U = !{A: Int,B:Bool}, yet T ≲′ U does not hold (in fact, we have U ≲′ T , a clear violation of

run-time safety). The same could be said for types {A: Int} ∗→ Int and {A: Int,B:Bool} ∗→ Int. In

short, our simulation needs the !p and→d-derivatives to be related in the direction opposite to that

of the types they derive from. Thus we need to selectively apply a strong form of contrasimulation

as well [88, 99] (the original notion is defined with weak transitions, which are not present in our

LTS).
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To allow this inversion, we generalize the definition of XY-simulation by parameterizing it on

two further subsets of actions, and including two more clauses where the direction of the relation

between the derivatives is reversed. By analogy with XY-simulation, we call the resulting notion

XYZW-simulation.

Definition 5.2.3. Let X ,Y,Z,W ⊆ A. A type relation R is a XYZW-simulation if, whenever

TRU , we have:

1. for each a ∈ X and each T ′ with T
a−→ T ′, there is U ′ such that U a−→ U ′ with T ′RU ′;

2. for each a ∈ Y and each U ′ with U
a−→ U ′, there is T ′ such that T a−→ T ′ with T ′RU ′;

3. for each a ∈ Z and each T ′ with T
a−→ T ′, there is U ′ such that U a−→ U ′ with U ′RT ′;

4. for each a ∈ W and each U ′ with U
a−→ U ′, there is T ′ such that T a−→ T ′ with U ′RT ′.

XYZW-similarity, written ⪯XYZW , is the union of all XYZW-simulation relations. We say that

a type T is XYZW-similar to type U if T ⪯XYZW U .

Note that since XYZW-simulation is a generalization of XY-simulation, it is also a general-

ization of bisimulation and plain simulation: XY-simulation can be seen as an XY∅∅-simulation,

bisimulation as an AA∅∅-simulation (alternatively, ∅∅AA-simulation or AAAA-simulation), and

plain simulation as an A∅∅∅-simulation.

Our semantic subtyping relation must be a preorder. The following theorem states that XYZW-

similarity satisfies this property regardless of its parameters. Its proof can be found in Appendix C.

Theorem 5.2.1. For any X ,Y,Z,W , ⪯XYZW is a preorder relation on types.

Equipped with the notion of XYZW-similarity, we are ready to define our semantic subtyping

relation for functional and higher-order context-free session types.

Definition 5.2.4. The semantic subtyping relation for functional and higher-order context-free

session types ≲ is defined by T ≲ U when T ⪯XYZW U such that X , Y , Z and W are defined

as the label sets generated by the following grammars for aX , aY , aZ and aW , respectively.

aX ::= aXY |→1 | ⟨⟩ℓ | Nℓ

aY ::= aXY | {}ℓ | ⊕ℓ

aZ , aW ::= !p |→d

aXY ::= Unit |→r | LM | ?p | ♯c | ⊙ | End

Notice the correspondence between the placement of the labels and the variance of their re-

spective type constructors. Labels arising from covariant positions of the arrow and input type

constructors are placed in both the X and Y sets, while those arising from the contravariant po-

sitions of the arrow and output type constructors are placed in both the Z and W sets. Labels

arising from the fields of constructors exhibiting width subtyping are placed in a single set, de-

pending on the variance of the constructor on the label set: X for covariance (external choice and

variant constructors), Y for contravariance (internal choice and record constructors). The function

type constructor is covariant on its multiplicity, thus the linear arrow label is placed in X . Finally,

checkmark labels and those arising from nullary constructors are placed in X and Y , but they
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could alternatively be placed in Z and W or in all four sets (notice the parallel with bisimulation,

that can be defined as AA∅∅-simulation, ∅∅AA-simulation, or AAAA-simulation).

Example 5.2.1. Recall the tree serialization types from Example 5.1.1. Here it is also easy to

see that SerializeTree ≲ SerializeFullTreen for any n. Observe that, on the side of SerializeTree,

transitions by ⊕Nil and ⊕Node always appear together, while, on the side of SerializeTreen, may

transition by ⊕Node or ⊕Nil, but never both simultaneously. Since ⊕Node and ⊕Nil belong exclu-

sively to Y , the left-hand side (beginning with SerializeTree) is always able to match the right-hand

side (beginning with SerializeFullTreen) on these labels (as well as on all the others in Y ∪W , and

vice-versa for X ∪ Z).

Before moving on to our algorithm, we present a result that states that the syntactic and the

semantic subtyping relation coincide. In other words, any result about one relation can be trans-

ferred to the other. As hinted above, the semantic relation is more amenable to an algorithmic

treatment than the syntactic one, which, in turn, is easier to grasp. If our algorithm turns out to be

sound with respect to ≲, Theorem 5.2.2 will assure us that the definition of ≤ is still an accurate

specification.

Theorem 5.2.2 (Soundness and completeness for subtyping relations). Let ⊢ T and ⊢ U . Then

T ≤ U iff T ≲ U .

The details of the proof can be found in Appendix D.



Chapter 6

A subtyping algorithm for context-free
session types

The notion of subtyping we have outlined is undecidable. This follows from the fact that our type

language, albeit slightly different, contains all the features necessary to reconstruct Padovani’s

proof of undecidability [82] which we replicated in Section 4.6.

Despite this negative result, we are still able to devise a sound (but necessarily incomplete)

algorithm for it. In other words, we are able to guarantee that it returns no false positives: if the

algorithm returns True on input (T,U), then T ≲ U really holds.

The algorithm is an adaptation of the equivalence algorithm of Almeida et al. [5]. At its core,

it determines the XYZW-similarity of simple grammars. Its application to context-free session

types is facilitated by a translation function to properly encode types as grammars. By providing

an appropriate encoding for other kinds of objects, the algorithm may likewise be adapted to other

domains.

Much like the original, our algorithm can be succinctly described in three distinct phases:

1. translate the given types to a simple grammar and two starting words;

2. prune unreachable symbols from productions;

3. explore an expansion tree rooted at a node containing the initial words, alternating between

expansion and simplification operations until either an empty node is found (decide True)

or all nodes fail to expand (decide False).

6.1 Translating types to grammars

As we have seen, context-free session types enjoy a tight correspondence with simple grammars,

i.e., deterministic grammars in Greibach normal form (GNF). By their more abstract and uniform

nature, grammars are more amenable to an algorithmic treatment than context-free session types.

The first step in our algorithm, then, is to convert a pair of types into a simple grammar—more

concretely, into set of productions P and two words (X⃗, Y⃗ ), which we define as sequences of

non-terminal symbols (each non-terminal symbol corresponds roughly to a type in a sequential

composition).
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We can check the bisimilarity and XYZW-similarity of words in a GNF grammar with pro-

ductions P because it naturally induces a labelled transition system, where states are words X⃗ ,

actions are terminal symbols a and the transition relation is defined as XY⃗
a−→P Z⃗Y⃗ when

X → aZ⃗ ∈ P . We denote the bisimilarity and XYZW-similarity of grammars by, respectively,

∼P and ⪯XYZW
P , where P is the set of productions. We also let ≲P denote grammar XYZW-

similarity with label sets as in Definition 5.2.4.

Grammar translation is done by procedure grm (Definition 6.1.3), which remains unchanged

from the original algorithm [5], but relies on two auxiliary definitions which must be adapted: the

unr function (Definition 6.1.1), which normalizes the head of session types and unravels recursive

types until reaching a type constructor, and the word procedure (Definition 6.1.2), which builds

a word from a session type while updating a set P of productions. Self-references are used as

non-terminal symbols, and we assume a non-terminal symbol ⊥ with no productions [5]. Our

adaptations to both functions are highlighted, and concern the inclusion of the End type and the

default LTS transitions for records/variants and choices (originating from rules L-RCDVRT and

L-CHOICE in Fig. 4.4), which are necessary to distinguish their empty forms from each other and

from Skip.

Definition 6.1.1. The unraveling of a type T is defined by induction on the structure of T :

unr(µx.T ) = unr([µx.T/x]T )

unr(End;S) = End

unr(⊙{ℓ:Sℓ}ℓ∈L;R) = ⊙{ℓ:Sℓ;R}ℓ∈L

unr(Skip;S) = unr(S)

unr((µs.S);R) = unr(([µs.S/s]S);R)

unr((S1;S2);S3) = unr(S1;(S2;S3))

and in all other cases by unr(T ) = T .

Definition 6.1.2. The word corresponding to a well-formed type T , word(T ), is built by descend-

ing on the structure of T while updating a set P of productions:

word(Unit) =Y , setting P := P ∪ {Y → Unit}

word(U
1→ V ) = Y , setting P := P ∪ {Y →→dword(U), Y →→r word(V ), Y →→1}

word(U
∗→ V ) =Y , setting P := P ∪ {Y →→dword(U), Y →→r word(V )}

word(Lℓ:TℓMℓ∈L) =Y , setting P := P ∪ {Y → LM⊥} ∪ {Y → LMk word(Tk) | k ∈ L}

word(Skip) = ε

word(End) = Y , setting P := P ∪ {Y → End⊥}

word(♯U) =Y , setting P := P ∪ {Y → ♯pword(U)⊥, Y → ♯c}

word(⊙{ℓ:Sℓ}ℓ∈L) =Y , setting P := P ∪ {Y → ⊙⊥} ∪ {Y → ⊙kword(Sk) | k ∈ L}

word(S1;S2) =word(S1)word(S2)

word(µx.U) =X

where, in each equation, Y is understood as a fresh non-terminal symbol, X as the non-terminal

symbol corresponding to type reference x, and ⊥ as a non-terminal symbol without productions.
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In addition, we must identify the unrolled versions of all the µ-subterms in the type T we want

to translate to a grammar. Assume {µX1.T1, ..., µXn.Tn} is the set of such subterms, and that

they are topologically sorted with respect to their lexical nesting, innermost first (that is, i < j

whenever Xj ∈ free(µXi.Ti)). The unrolled versions of such subterms are as follows.

T ′
1 = [µxn.Tn/xn]...[µx2.T2/x2][µx1.T1/x1]T1

T ′
2 = [µxn.Tn/xn]...[µx2.T2/x2]T2

...

T ′
n = [µxn.Tn/xn]Tn

We are now able to define the type-to-grammar translation function grm as follows.

Definition 6.1.3. Given an initial set of productions P0, the grammar corresponding to a type T

is given by function grm, defined as:

grm(T,P0) = (word(T ),Pn)

where each Pi is computed from Pi−1 by the following recurrence.

P ′
i ∪ {Xi → aj Y⃗jZ⃗ | (Z → aj Y⃗j) ∈ P ′

i , where (ZZ⃗,P ′
i) = grm(unr(T ′

i ),Pi−1)}

where each T ′
i is the unrolled version of the ith µ-subterm in T , topologically sorted with respect

to lexical nesting (innermost first).

To obtain two initial words X⃗ and Y⃗ and the set of productions P corresponding to two well-

formed types T and U , proceed as follows: rename U so that its bound type references do not

overlap with those of T , run grm(T, ∅) to obtain (X⃗,P ′) and, finally, run grm(U,P ′) to obtain

(Y⃗ ,P).

Example 6.1.1. Consider again the types for tree serialization introduced in Example 5.1.1. Sup-

pose we want to know whether SerializeFullTree0
∗→ Unit ≲ STree

1→ Unit. Applying the

procedure we just described, the productions generated for these types are as follows, with X0 and

Y0 as the starting words.

X0 →→dX1

X0 →→rX5

X1 → ⊕NodeX2X3X2

X1 → ⊕⊥

X2 → ⊕Empty

X2 → ⊕⊥

X3 → !pX4⊥

X3 → !c

X4 → Int

X5 → Unit

Y0 →→dY1

Y0 →→rX5

Y0 →→1

Y1 → ⊕⊥

Y1 → ⊕Empty

Y1 → ⊕NodeY1X3Y1

The following result states that procedure grm preserves the semantic subtyping relation,

which establishes the soundness of the first step of algorithm. Its proof can be found in Ap-

pendix E.

Theorem 6.1.1 (Soundness for grammars). Let ⊢ T , ⊢ U , (X⃗,P ′) = grm(T, ∅) and (Y⃗ ,P) =

grm(U,P ′). If X⃗ ≲P Y⃗ , then T ≲ U .
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6.2 Pruning unreachable symbols

The grammars generated by procedure grm may contain unreachable words, which can be ig-

nored by the algorithm. Intuitively, these words correspond to communication actions that cannot

be fulfilled, such as subterm ?Bool in type (µs.!Int;s);?Bool. Formally, these words appear in

productions following what are known as unnormed words.

Definition 6.2.1. Let a⃗ be a non-empty sequence of non-terminal symbols a1, . . . , an. Write

Y⃗
a⃗−→P Z⃗ when Y⃗

a1−→P . . .
an−→P Z⃗. We say that a word Y⃗ is normed if for some a⃗ we

have Y⃗
a⃗−→P ε, and unnormed otherwise. If Y⃗ is normed and a⃗ is the shortest path such that

Y⃗
a⃗−→P Y⃗ ′ for some Y⃗ ′ ̸−→P , then a⃗ is called the minimal path of Y⃗ , and its length is the norm

of Y⃗ , denoted norm(Y⃗ ).

It is known that any unnormed word Y⃗ is bisimilar to its concatenation with any other word,

i.e., if Y⃗ is unnormed, then Y⃗ ∼P Y⃗ X⃗ [20]. It is also easy to show that ∼P ⊆ ≲P , and hence

that Y⃗ ≲P Y⃗ X⃗ . In this case, X⃗ is said to be unreachable and can be safely removed from the

grammar. We call the procedure of removing all unreachable symbols from a grammar pruning,

and denote the pruned version of a grammar P by prune(P).

Lemma 6.2.1 (Soundness and completeness for pruning). X⃗ ⪯XYZW
P Y⃗ iff X⃗ ⪯XYZW

prune(P) Y⃗

6.3 Exploring an expansion tree

In its third and final phase, the algorithm explores an expansion tree, alternating between expan-

sion and simplification steps. An expansion tree is a tree whose nodes are sets of pairs of words,

whose root is the singleton set containing the pair of starting words under test, and where ev-

ery child is an expansion of its parent. A branch is deemed successful if it is infinite or has an

empty leaf, and deemed unsuccessful otherwise. The original definition of expansion ensures that

the union of all nodes along a successful branch (without simplifications) constitutes a bisimula-

tion [58]. We adapt the definition of expansion to ensure that such a union yields an XYZW-

simulation instead, obtaining the following definition and result (cf. Appendix D for the proof).

Definition 6.3.1. The XYZW-expansion of a node N is defined as the minimal set N ′ such that,

for every pair (X⃗, Y⃗ ) in N , it holds that:

1. if X⃗ → aX⃗ ′ and a ∈ X then Y⃗ → aY⃗ ′ with (X⃗ ′, Y⃗ ′) ∈ N ′

2. if Y⃗ → aY⃗ ′ and a ∈ Y then X⃗ → aX⃗ ′ with (X⃗ ′, Y⃗ ′) ∈ N ′

3. if X⃗ → aX⃗ ′ and a ∈ Z then Y⃗ → aY⃗ ′ with (Y⃗ ′, X⃗ ′) ∈ N ′

4. if Y⃗ → aY⃗ ′ and a ∈ W then X⃗ → aX⃗ ′ with (Y⃗ ′, X⃗ ′) ∈ N ′

Lemma 6.3.1 (Safeness property for XYZW-simulation). Given a set of productions P , it holds

that X⃗ ⪯XYZW
P Y⃗ iff the expansion tree rooted at {(X⃗, Y⃗ )} has a successful branch.
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The simplification steps we mentioned consist of applying rules that safely modify the ex-

pansion tree during its construction, in an attempt to keep some branches finite. The rules are

iteratively applied to each node until a fixed point is reached, at which point we can proceed with

expansion. To each node N we apply three simplification rules, adapted from the equivalence

algorithm [5]:

1. REFLEXIVITY: omit pairs of the form (X⃗, X⃗);

2. PREORDER: omit pairs belonging to the least preorder containing the ancestors of N ;

3. SPLIT: if (X0X⃗, Y0Y⃗ ) ∈ N and X0 and Y0 are normed, then:

• Case |X0| ≤ |Y0|: Let a⃗ be a minimal path for X0 and Z⃗ the word such that Y0
a⃗−→P

Z⃗. Add a sibling node for N including pairs (X0Z⃗, Y0) and (X⃗, Z⃗Y⃗ ) in place of

(X0X⃗, Y0Y⃗ );

• Otherwise: Let a⃗ be a minimal path for Y0 and Z⃗ the word such that X0
a⃗−→P Z⃗. Add

a sibling node for N including pairs (X0, Y0Z⃗) and (Z⃗X⃗, Y⃗ ) in place of (X0X⃗, Y0Y⃗ ).

When a node is simplified, we keep track of the original node in a sibling, thus ensuring that along

the tree we keep an “expansion-only” branch.

The algorithm explores the tree by breadth-first search using a queue of node-ancestors pairs,

thus avoiding getting stuck in infinite branches, and alternates between expansion and simplifica-

tion steps until it terminates with False if all nodes fail to expand or with True if an empty node

is reached. The following pseudo-code illustrates the procedure.

subG(X⃗, Y⃗ ,P) = explore(singletonQueue(({(X⃗, Y⃗ )}, ∅),P)

where explore(q,P) =

if empty(q) then False % all nodes failed to expand, no successful branch found

else let (n, a) = head(q) in

if empty(n) then True % empty node reached, successful branch found

else if hasExpansion(n,P) % if possible, expand node, simplify and recur

then explore(simplify(expand(n,P), a ∪ n, dequeue(q)),P)

else explore(dequeue(q),P) % otherwise, discard node

Example 6.3.1. The XYZW-expansion tree for Example 6.1.1 is illustrated in Fig. 6.1.

Finally, function subT puts all the pieces of the algorithm together:

subT(T,U) = let (X⃗,P ′) = grm(T, ∅), (Y⃗ ,P) = grm(U,P ′) in subG(X⃗, Y⃗ , prune(P))

It receives two well-formed types T and U , computes their grammar and respective starting words

X⃗ and Y⃗ , prunes the productions of the grammar and, lastly, uses function subG to determine

whether X⃗ ≲P Y⃗ .

We now state our main result concerning the soundness of subT, which guarantees that its

implementation in a type checker cannot compromise any safety properties that depend on ≲. Its

proof can be found in Appendix D.
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Figure 6.1: An XYZW-expansion tree for Example 6.1.1, exhibiting a finite successful branch.

Theorem 6.3.1 (Soundness). If subT(T,U) returns True, then T ≲ U .

6.4 Optimizations

Almeida et al. [5] present three possible optimizations for their equivalence algorithm:

1. Eliminating redundant productions in the grammar. When adding a new production X → Y⃗

to the grammar, check if a syntactically equal production (up to renaming of non-terminal

symbols) Z → W⃗ already exists. If it does, abandon Y → X⃗ and return Z.

2. Filtering nodes with hopeless pairs. Remove from the tree any node composed of pairs of

words with different norms (observe that words with different norms cannot be bisimilar).

3. Using a double-ended queue to prepend promising children. Prepend (rather than append)

empty nodes or nodes with pairs (X⃗, Y⃗ ) such that norm(X⃗) ≤ 1 and norm(Y⃗ ) ≤ 1.

The first and third optimizations are still applicable in the subtyping setting, since they do not

deal directly with the properties of bisimilarity. The same, however, cannot be said for the second

optimization. By generalizing the algorithm for XYZW-similarity, the norm of a word loses its

heuristic power: words with different norms may still be XYZW-similar, normed words may be

XYZW-similar to unnormed words, and vice-versa.

Example 6.4.1. Consider streams of integers. We can use session types to describe:

• finite output streams, FiniteOStream = µs.⊕{Next: !Int;s, Stop: Skip},

• infinite output streams, InfiniteOStream = µs.⊕{Next: !Int;s}, and

• singleton output streams, SingletonOStream = ⊕{Next: !Int;⊕{Stop:Skip}},

and with corresponding words X⃗F, X⃗I and X⃗S, respectively. Observe that we have X⃗F ≲P X⃗S

(FiniteOStream ≲ SingletonOStream), yet norm(X⃗F) = 1 and norm(X⃗S) = 2. Similarly,

X⃗F ≲P X⃗I (FiniteOStream ≲ InfiniteOStream), yet X⃗F is normed and X⃗I is unnormed.

It should be noted, however, that we suffer no great loss without optimization 2: in the empiri-

cal evaluation of Almeida et al., it actually worsened the performance of the algorithm. In fact, of

the three optimizations, only the first brought general performance gains. As such, it is the only

one we decided to include in our implementation.
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Subtyping the FREEST programming
language

Establishing the soundness of our algorithm gives us the green light to implement it in a type

checker. After all, if all positives it returns are true positives, the properties guaranteed by the type

checker cannot be compromised. However, given the necessary incompleteness of the algorithm,

we should not be surprised if we find cases where it does not return at all (in which case it should

be interrupted and return False, whether true or not). Fortunately, as we demonstrate in the next

chapter, this (safe) inaccuracy seems to be a small price to pay for the increase in expressive power

afforded by subtyping.

We begin this chapter by briefly describing the FREEST programming language [95, 4, 2],

version 3.3.0, which provided the testing grounds for the implementation and empirical evaluation

of our algorithm. We then present a non-trivial program that highlights the benefits of adding

subtyping to the language. We end the chapter by briefly describing the changes that were made

to implement this feature.

7.1 The FREEST programming language

Programming language support for basic concurrency has been around for decades, and is by now

expected from any practical programming language. Most mainstream general-purpose program-

ming languages offer primitives for shared memory concurrency, and support for message-passing

concurrency is already widespread.

Despite not enjoying mainstream presence yet, regular session types have, over their 30-year

history, seen many proposals for their embedding in established languages like C [77], Java [57,

55], Python [76, 56], Rust [59], OCaml [81] and Haskell [80]. Several experimental languages,

such as ATS [100], Links [36]and SePi [37] also offer native support for some variation of them.

FREEST, however, is among the very few languages that can claim to support non-regular session

types (to our knowledge, the only other is Rast [29]).

Spurred by the development of the type equivalence algorithm of Almeida et al., FREEST

is currently the paramount implementation of context-free session types in a functional setting.

65
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It’s core language can be described as a polymorphic1 call-by-value2 λ-calculus enriched with

primitives for spawning processes, creating communication channels and exchanging messages

on them. Firmly grounded in the ML tradition, FREEST features a static typing discipline, favors

currying and higher-order functions, and borrows much of its syntax and idioms from Haskell (and

occasionally from OCaml and F#).

A FREEST program consists of an optional module header, where the current module is named

and other modules may be imported, followed by a sequence of declarations: type/data decla-

rations, type signatures and variable/function definitions. After parsing a program, the FREEST

compiler uses the information provided by these declarations to check each of the definitions for

type errors. If no errors are found, each of the definitions is then evaluated in order, and the output

of the program is the value of the main variable, if defined.

Listing 7.1.1 shows an example of a FREEST program implementing a simple math server,

governed by session types similar to those found in Chapter 3. It begins with two type declara-

tions, which allow it to refer to the client and server channel end types by the names NegClient

and MathServer. These declarations highlight one difference between our type language and

FREEST: the Wait and Close types. FREEST uses asynchronous communication semantics,

which means that sending processes don’t wait for messages to be received in order to proceed.

Having a single End type presupposes a single close operation, which forces processes to wait

for each other to terminate the connection. By splitting End into Wait and Close, we can distin-

guish between two terminal operations, wait and close, and achieve asynchronicity by making

the former blocking and the latter non-blocking. Following the type declarations, a type signa-

ture specifies that the type of mathServer, the function that performs the duties of the server, is

MathServer -> (), i.e., a function taking in a channel end of type MathServer and returning ().

The definition for this function follows, in the form of two equations. These equations showcase

FREEST’s pattern matching feature, which allow us to emulate common mathematical notation

and perform case analysis directly on the left-hand side of equations, avoiding the need to write

case and match expressions 3. The right-hand side of these equations is similar to our examples

from Chapter 3, and, apart from operator |>, should not be hard to read. 4

The signature and definition of negClient follow, and the right-hand side of its equation

should also be clear (@Int is a type checking annotation and can be ignored.5).

1I.e., featuring generic types, like ∀α.α → α for a function that takes and returns values of the same type.
2Call-by-value refers to an evaluation strategy in which arguments are evaluated before being substituted in the body

of abstractions (this was our strategy in Chapter 2). It stands in contrast with call-by-need or lazy evaluation (used by
e.g. Haskell), where arguments are passed as suspended computations (thunks) to be evaluated only when needed.

3Alternatively, we could write this definition as we have done in Chapter 3, using a single equation of the form
mathServer c = match c with {...} (in fact, this is what the definition above gets translated to by the compiler).

4This operator, inspired by F#, simply denotes reverse function application: (x |> f) stands for (f x). By associ-
ating to the right, |> helps programmers chain sequences of operations on the same channel end in the order they are
intended, and is therefore widely used in FREEST programs.

5As stated above, FREEST supports generic functions. The self explanatory receiveAndClose function, having
type forall a. ?a;End -> a, is one such function. In order to apply it to a channel end of type ?Int;End, we must
instantiate the type variable a with type Int, and this is the purpose of the @Int annotation. Sparing programmers the
burden of writing and reading such annotations is one of the goals of future work on the language.
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type MathServer = &{Neg: ?Int;!Int, Add: ?Int;?Int;!Int};Wait
type NegClient = +{Neg: !Int;?Int };Close

mathServer : MathServer -> ()
mathServer (Neg s) = let (n, s) = receive s in

send (-n) s |> wait
mathServer (Add s) = let (n1, s) = receive c in

let (n2, s) = receive c in
send (n1 + n2) s |> wait

negClient : NegClient -> Int
negClient c = c |> select Neg |> send 5 |> receiveAndClose @Int

main : Int
main = let (c,s) = new @NegClient () in

fork (\_:() 1-> mathServer s);
negClient c

Listing 7.1.1: A FREEST program implementing a simple math server.

Finally, the definition of variable main, of type Int, sets everything in motion. It begins by

creating a channel for the client and server to communicate, using new primitive. Annotating new

with @NegClient results in a channel end of type NegClient, c, and another of a type dual to

NegClient, s, which together will ensure that the intended protocol is followed. Then, applying

the fork primitive to what we call a thunk (a function with a trivial argument of type (), meant to

simply suspend the evaluation of its body), a new process is spawned to evaluate the expression

mathServer r, effectively launching the server. Finally, by calling negClient with w, the main

thread takes on the role of the client. Since negClient requests the negation of 5, we can expect

main to evaluate to -5.

Besides demonstrating the main features of the FREEST language, this small program also

enjoys the benefits of subtyping, for which we added support in version 3.3.0. Observe that,

without this feature, expression mathServer s would raise a type error, for the type of s (a dual

of NegClient) is clearly not equivalent to MathServer (but is clearly a subtype of it).

7.2 Example: JSON serialization

The example from the previous section is quite simple, and does not take full advantage of our con-

tributions (observe that MathServer and NegClient are perfectly regular session types). Recalling

the JSON serialization protocol from Example 4.1.2, we now turn our attention to a FREEST pro-

gram exhibiting subtyping in a more practical and inherently context-free setting.

Representing JSON The context-free nature of the JSON format arises from its recursive, tree-

like structure, which allows array and object values to aggregate multiple other arbitrary JSON
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data JSON = JObj JObj
| JArr JArr
| JStr String
| JNum Int
| JBool Bool
| JNull

data JObj = JKeyVal String JSON JObj | JEmptyO
data JArr = JElem JSON JArr | JEmptyA

j : JSON
j = JObj (JKeyVal "age" (JNum 84) (JKeyVal "married" (JBool False) JEmptyO))

Listing 7.2.1: FREEST representation of JSON data using algebraic datatypes

values. Before serializing such values, we must know how to represent them. For this purpose,

FREEST features an algebraic datatype mechanism, providing a simple and convenient syntax to

declare and use (possibly recursive) variant types like those introduced in Section 2.4. Our repre-

sentation of JSON data using this mechanism is given by the data declarations in Listing 7.2.1.

The definition for j, corresponding to the JSON object {"age": 84, "married": false}, shows

how such values may be created. 6

Note 7.2.1. In FREEST, data declarations are the only way to introduce variant types. Since

FREEST does not allow tags to be shared among data declarations, it is not possible to have the

same tag in two different variant types. As such, it is impossible for these types to benefit from

width subtyping as described in previous chapters. This is also the case for record types, which,

as of version 3.1.0, have no concrete syntax for their introduction and elimination (their use in

FREEST is restricted to the internal core language).

Deserializing JSON With an appropriate representation for JSON values, we can now think

about how they should be serialized across a channel. Following the structure of the data dec-

larations and (for the sake of our example) taking the point of view of the receiver, we ob-

tain the type declaration for ReceiveJSON in Listing 7.2.2, which relies on the declarations for

ReceiveKeyVals and ReceiveElems to handle the recursive, list-like deserialization of arrays and

objects. The implementation of the protocol follows almost immediately from these declarations,

in the form of functions receiveJSON, receiveKeyVals and receiveElems respectively (observe

that the type of these functions must be polymorphic on the continuation of the argument type, for

otherwise they would not be able to serialize multiple branches of a JSON value).

Serializing an array of numbers Given the implementation of JSON deserialization, imple-

menting its reverse, serialization, is easy: we simply follow SendJSON, the dual of ReceiveJSON,
6To exemplify the convenience of datatypes, in our original language, type JArr would be defined as

µt.⟨Elem: (JSON, t),EmptyArr: ()⟩, and expression (KeyVal "married" (JBool False) EmptyObj) would be
written as KeyVal (“married”, JBool false as JSON,EmptyObj () as JObj) as JObj.
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type ReceiveJSON = &{ Object : ReceiveKeyVals
, Array : ReceiveElems
, String': ?String
, Number : ?Int
, Boolean: ?Bool
, Null : Skip }

type ReceiveKeyVals = &{ KeyVal: ?String;ReceiveJSON;ReceiveKeyVals
, EmptyO: Skip }

type ReceiveElems = &{ Elem : ReceiveJSON;ReceiveElems
, EmptyA: Skip }

type SendJSON = dualof ReceiveJSON

receiveJSON : ReceiveJSON;a -> (JSON, a)
receiveJSON (Object c) = let (o, c) = receiveKeyVals @a c in (JObj o, c)
receiveJSON (Array c) = let (a, c) = receiveElems @a c in (JArr a, c)
receiveJSON (String' c) = let (s, c) = receive c in (JStr s, c)
receiveJSON (Number c) = let (n, c) = receive c in (JNum n, c)
receiveJSON (Boolean c) = let (b, c) = receive c in (JBool b, c)
receiveJSON (Null c) = (JNull, c)

receiveKeyVals : ReceiveKeyVals;a -> (JObj, a)
receiveKeyVals (KeyVal c) = let (k, c) = receive c in

let (v, c) = receiveJSON @(ReceiveKeyVals;a) c in
let (kvs, c) = receiveKeyVals @a c in
(JKeyVal k v kvs, c)

receiveKeyVals (EmptyO c) = (JEmptyO, c)

receiveElems : ReceiveElems;a -> (JArr, a)
receiveElems (Elem c) = let (j , c) = receiveJSON @(ReceiveElems;a) c in

let (js, c) = receiveElems @a c in
(JElem j js, c)

receiveElems (EmptyA c) = (JEmptyA, c)

Listing 7.2.2: FREEST implementation of a JSON deserialization protocol.

which can be succinctly defined using the dualof type operator. Suppose, however, that we would

like to have specialized serialization functions that enforce certain restrictions on the structure of

the JSON data they send. For example, we may want to have a serialization function sendNums

that is restricted to sending lists of integers (type [Int]) but is still able to communicate with

receiveJSON, which receives arbitrary JSON values. Subtyping enables us to implement this

asymmetry, requiring only that we carefully refine sendNums’ view of the JSON protocol until it

is restricted to arrays of numbers. The resulting type, SendNums, is shown in Listing 7.2.3 along

with the implementation of the protocol in the form of function sendNums.
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type SendNums = +{ Array : SendNumElems }
type SendNumElems = +{ Elem: SendNum;SendNumElems

, EmptyA: Skip }
type SendNum = +{ Num: !Int }

sendNums : [Int] -> SendNums;a -> a
sendNums xs c = c |> select Array |> sendNumElems @a xs

sendNumElems : [Int] -> SendNumElems;a -> a
sendNumElems [] c = c |> select EmptyA
sendNumElems (x::xs) c = c |> select Elem |> select Number |> send x

|> sendNumElems @a xs

main : JSON
main = let (o,i) = new @(SendJSON;Close) () in

fork (\_:() 1-> sendNums @Close [1,3,5] o |> close);
let (j, i) = receiveJSON @Wait i in
wait i; j

Listing 7.2.3: FREEST implementation of a JSON-compatible integer list serialization protocol,
governed by context-free session types

Putting it all together Finally, also in Listing 7.2.2, we have the definition of the main variable,

which sets in motion two threads exemplifying the usage of sendNums and receiveJson. First,

a general JSON serialization channel is created with new @(SendJSON;Close) (), resulting in

a pair of channel ends o, of type SendJSON;Close, and i, of type ReceiveJSON;Wait. Then, a

new process is spawned to evaluate o |> sendNums @Close [1,2,3,4] |> close, which will

serialize list [1,3,5] as a JSON value through our previously created channel. Here we can

witness subtyping in action: sendNums @Close expects a channel end of type SendNums;Close,

but is given one of type SendJSON;Close. Since our contributions allow FREEST to recognize

SendJSON;Close as a subtype SendNums;Close, the type checker considers this expression valid

and no error is raised. With the sending process spawned, the main function then proceeds to

take the role of the receiver by calling receiveJSON @Wait on i. After receiving the JSON data

and binding it to j, it uses wait and blocks until the sending process uses close to terminate

connection. Finally, it returns j, which, being the value of the main variable, will be output to the

command line as JArr (JElem (JNum 1) (JElem (JNum 3) (JElem (JNum 5) JEmptyA))).

7.3 Implementing subtyping in FREEST

The FREEST 3.2.0 compiler is written in Haskell and features a running implementation of the

type equivalence algorithm of Almeida et al. [5], on which our subtyping algorithm is based. As

such, adding subtyping in FREEST 3.3.0 was mostly (but not only) a matter of adapting this im-

plementation to reflect our changes to the original algorithm. We close this chapter by describing
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TA-EQ

Γ1 ⊢ e ⇒ U | Γ2 T ≃ U

Γ1 ⊢ e : T ⇒ Γ2

TA-SUB
Γ1 ⊢ e ⇒ U | Γ2 U ≤ T

Γ1 ⊢ e : T ⇒ Γ2

Figure 7.1: FREEST’s previous check-against rule, TA-EQ, and the new one, TA-SUB.

this process in some detail. The source code for both versions of the compiler can be downloaded

from the FREEST language homepage [95]. For the sake of brevity, we assume the reader has

some familiarity with the Haskell programming language.

Compiler structure The FREEST compiler can be described as a pipeline that takes a source

file containing a FREEST program, parses it to build an abstract representation of that program,

prepares said representation for further processing (in a process called elaboration), validates it

and, finally, executes it with an interpreter. In Haskell, this is implemented as a series of state-

ful computations encapsuled by a State monad, with the state represented as a record bundling

together the information needed across the compilation process, e.g., type signatures, variable

definitions, errors encountered, as well as bookkeeping information.

Adapting type checking Subtyping is strictly contained in the validation phase of the compiler,

which, besides ensuring types are well-formed, checks the definition of every variable against the

types declared in its signature using a bidirectional type checking algorithm. In such typing algo-

rithms, a typing derivation is constructed bottom-up two with the aid of two mutually defined op-

erations: synthesis, which induces the type of an expression from its structure, and check-against,

which verifies that an expression matches a certain type.

According to the language specification [2], the original type equivalence algorithm is evoked

in the checking phase, which, omitting some details, is described by rule TA-EQ in Fig. 7.1 where

judgment Γ1 ⊢ e : T ⇒ Γ2 is read as “under context Γ1, expression e successfully checks against

type T and yields a new context Γ2” and judgment Γ1 ⊢ e ⇒ U | Γ2 can be read as “under

context Γ1, we can determine that e has type U , yielding a new context Γ2”. The Γ2 context

yielded at the end of both judgments contains all variables in Γ1 except the linear ones consumed

during synthesis, ensuring that they cannot be used more than once. In short, this rule states that

an expression successfully checks against a given type T if we can find some type U for it such

that T ≃ U . To enjoy subtyping, all we need to do is replace the call to the equivalence algorithm,

T ≃ U , with a call to the subtyping algorithm, U ≤ T , obtaining rule TA-SUB.

Since FREEST is an experimental language and users may want to retain control over whether

or not to use subtyping, we include the command line flag --sub to enable this feature. The

relevant code for these changes can be found in modules Validation.Typing and Util.CmdLine

of the FREEST compiler.
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Adapting equivalence The changes necessary to adapt the implementation of the equivalence

algorithm directly reflect those mentioned in the previous chapter. Summarily, we:

1. adjusted the grammar translation procedure (to include new productions for linear functions,

records, variants and choices, as well as the Close and Wait types);

2. generalized the definition of expansion to allow for XYZW-expansion;

3. adjusted the simplification rules;

4. removed the optimization that filtered pairs of words based on their norms.

Setting a timeout Since the subtyping algorithm may not terminate, it is wise to set a time limit

for it to run before interrupting the computation and signaling a timeout error. In this way, we

avoid leaving the user on hold indefinitely in the cases where the algorithm does not halt. Based

on our experiments (which are covered in the next chapter), we chose a default limit of 1 minute

per call to the algorithm. However, since this may be too low for some complex (e.g., highly

recursive) types, we also allow the user to adjust this before compilation using the command line

option --check-timeout TIME, where argument TIME is the desired limit in milliseconds. When

this limit is exceeded, the user is presented with an error message like the following.

Timeout when matching expected type rec a. &{N:a;a;!Int, L:Skip};!Int
with actual type rec a. &{N:a;a;!Int, L:!Int

for expression c
Subtyping is enabled, timeout set to 60000ms

FreeST 's subtyping relation is undecidable , so it may not be
possible to determine relation between certain types.

Consider disabling subtyping with the '--no-sub' flag , or
setting a higher limit with the '--check-timeout TIME' option.

Help us make FreeST better! Report this issue to the
development team at freest-lang@listas.ciencias.ulisboa.pt

Haskell is a mostly pure functional language: except under an IO monad, functions may not have

side effects, and their return values must depend entirely on their arguments. In the FreeST com-

piler, before our changes, the use of IO was mostly restricted to the parser (to access the file

system) and the interpreter (to evaluate FREEST programs, which themselves have side effects).

However, setting a timeout during type checking requires us to extend the use of IO to this phase

as well, which, as mentioned above, was already under a State monad. To combine the two

monads, we used the monad transformer StateT, creating a monad stack that allows the use of

the operations associated with the State monad and, through lifting (more concretely, through the

liftIO function), to the effectful operations that need IO.
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Evaluating the algorithm

With our contributions, FREEST effectively gains support for subtyping at little to no cost in

performance. In this chapter, we present an empirical study to support this claim. Our evaluation is

based on two suites of tests: a suite of randomly generated pairs of types, and a suite of handwritten

FREEST programs. All data was collected on a machine featuring an Intel Core i5-6300U at

2.4GHz with 16GB of RAM.

8.1 Generative testing

The design and implementation of our algorithm was guided by the principles of test-driven de-

velopment: even before any code was written, dozens of unit tests were designed. These tests con-

sisted of valid and invalid pairs of types, carefully designed to access whether the implementation

correctly reflects the particular features of our notion of subtyping. As development progressed,

more tests were written such that, by the end 168 unit tests had been written.

Despite their usefulness in guiding develpment, we judged these test cases to be too few and

small (each using only a handful of type constructors per type), and therefore not suitable for a

robust evaluation of the performance of our implementation. Writing larger types by hand was,

however, judged to be too menial and error-prone. As such, we turned our attention to generative

testing, a testing technique test cases are constructed automatically and at random using dedicated

generators. By redirecting most of our efforts to the design and implementation of said generators,

this technique makes it easier to produce great numbers of large test cases.

The QuickCheck[22] library is by far the most popular tool for generative testing. Native

to the Haskell ecosystem, it has been ported to numerous languages, and its ideas have inspired

many other tools [67, 78, 50]. It can be described as a lightweight library that provides a carefully

designed set of functions and types that can be combined to define random data generators and

specify the properties that the generated data should exhibit. The high-level, combinatorial nature

of these functions gives QuickCheck the flavor of an embedded domain-specific language that can

be used to tailor the generative testing approach to the particular needs of the software under test.

To test our algorithm using QuickCheck, we decided to implement two generators: one for

valid subtyping pairs, and another for invalid ones. Using these generators, we then design a testing

73
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procedure that will produce thousands of test cases and run the algorithm on them, expecting it to

return True on valid pairs and False on invalid ones.

Generating valid pairs

To generate valid pairs of types, i.e., pairs that are in the subtyping relation by construction, we fol-

low an algorithm induced from the properties of subtyping, much like the one induced by Almeida

et al. [5]. The following theorem enumerates the properties.

Theorem 8.1.1 (Valid subtyping properties).
1. Unit ≤ Unit, End ≤ End and Skip ≤ Skip;

2. T
m→ U ≤ V

n→ W if V ≤ T , U ≤ W and m ⊑ n;

3. {ℓ:Tℓ}ℓ∈L ≤ {k:Uk}k∈L if K ⊆ L and Tj ≤ Uj(∀j ∈ K);

4. ⟨ℓ:Tℓ⟩ℓ∈L ≤ ⟨k:Uk⟩k∈K if L ⊆ K and Tj ≤ Uj(∀j ∈ L);

5. S1;S2 ≤ R1;R2 if S1 ≤ R1 and S2 ≤ R2;

6. µx.T ≤ U if T ≤ U and x /∈ free(T ) ∪ free(U);

7. T ≤ µx.U if T ≤ U and x /∈ free(T ) ∪ free(U);

8. µx.T ≤ [µy.U/y]U if µx.T ≤ µy.U .

9. µx.T ≤ µx.U if T ∼ U or otherwise T ≤ U and x /∈ free−(T ) ∪ free−(U);

10. ⊙{ℓ:Sℓ}ℓ∈L ≤ ⊙{k:Rk}k∈L if K ⊆ L and Sj ≤ Rj(∀j ∈ L);

11. N{ℓ:Sℓ}ℓ∈L ≤ N{k:Rk}k∈K if L ⊆ K and Sj ≤ Rj(∀j ∈ L);

12. End;S ≤ End, End ≤ End;S and End;S ≤ End;R for any S,R;

13. S;Skip ≤ R, Skip;S ≤ R, S ≤ R;Skip and S ≤ Skip;R if S ≤ R;

14. ⊕{ℓ:Sℓ}ℓ∈L;S′ ≤ ⊕{k:Rk;R
′}k∈L and ⊕{ℓ:Sℓ;S

′}ℓ∈L ≤ ⊕{k:Rk}k∈L;R′ if K ⊆ L,

Sj ≤ Rj(∀j ∈ L) and S′ ≤ R′;

15. N{ℓ:Sℓ}ℓ∈L;S′ ≤ N{k:Rk;R
′}k∈L and N{ℓ:Sℓ;S

′}ℓ∈L ≤ N{k:Rk}k∈L;R′ if L ⊆ K,

Sj ≤ Rj(∀j ∈ L) and S′ ≤ R′;

16. S1;(S2;S3) ≤ (R1;R2);R3 and (S1;S2);S3 ≤ R1;(R2;R3) if S1 ≤ R1, S2 ≤ R2 and

S3 ≤ R3;

Proof. By observation of the syntactic subtyping rules in Fig. 5.1 and Definition 8.1.1.

From this theorem we can derive generation algorithm for valid subtyping pairs, parameterized

on the size i of the pair: if i = 0, then generate a type reference x and return pair (x, x), or select

at random one of the pairs in Item 1 of Theorem 8.1.1; if i ≥ 1, select at random one of the pairs in

the remaining items and, for all corresponding pairs of type metavariables, recursively generate

a valid pair with size i − 1. (In the actual implementation, the size passed to the recursive call is

adjusted on a case-by-case basis to balance the distribution of type constructors.)

We must pay special attention to type references when generating pairs envolving recursive

type constructor µ. For example, when generating pair µx.T ≤ U with T ≤ U in Item 6, we

must ensure that x is not free in T or U , for otherwise enclosing only T in µx. would make the
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ocurrences of x in T refer to T itself, while those in U could refer to a larger type, of which U

would be a part.

Even where we we have the µ on both sides, in Item 9, we must take special precautions.

It is not enough for the types underneath µx. to be in the subtype relation: x must not appear

in a contravariant position in either type. Observe that, despite looking so, µt.t ∗→ t is not a

subtype of µt.t 1→ t (their unfolding makes it clear). Since t appears in both covariant (range)

and contravariant (domain) positions, µt.t ∗→ t must be simultaneously subtype and supertype of

µt.t
1→ t, which cannot be true because of the multiplicities of the arrows. We avoid generating

such pairs in Item 9 by ensuring that the reference we bind only appears in covariant positions of

T and U , unless they are equivalent, in which case there is no such restriction. The set of free

references in contravariant positions of a type T is given by free−(T ), and is defined as follows.

Definition 8.1.1. The sets of free references in covariant and contravariant positions in a type T ,

free+(T ) and free−(T ), are mutually defined by induction on the structure of T :

free+(T
m→ U) = free−(T ) ∪ free+(U)

free+(Lℓ:TℓMℓ∈L) =
⋃
k∈L

free+(Tk)

free+(?T ) = free+(T )

free+(!T ) = free−(T )

free+(S;R) = free+(S) ∪ free+(R)

free+(µx.T ) = free+(T ) \ {x}

free+(x) = {x}

free−(T
m→ U) = free+(T ) ∪ free−(U)

free−(Lℓ:TℓMℓ∈L) =
⋃
k∈L

free−(Tk)

free−(?T ) = free−(T )

free−(!T ) = free+(T )

free−(S;R) = free−(S) ∪ free−(R)

free−(µx.T ) = free−(T ) \ {x}

and in all other cases by free+(T ) = ∅ and free−(T ) = ∅, respectively.

Generating invalid pairs

To generate invalid subtyping pairs, we follow the same algorithm but inject, at random, the invalid

pairs that occur in each item of the following theorem.

Theorem 8.1.2 (Invalid subtyping properties).
1. Int ̸≤ Unit and Unit ̸≤ Int;

2. {ℓ:Tℓ}ℓ∈L ̸≤ {k:Uk}k∈L if L ⊊ K and Tj ≤ Uj(∀j ∈ L);

3. ⟨ℓ:Tℓ⟩ℓ∈L ̸≤ ⟨k:Uk⟩k∈K if K ⊊ L and Tj ≤ Uj(∀j ∈ K);

4. T
1→ U ̸≤ V

∗→ W , with V ≤ T,U ≤ W ;

5. T
m→ U ̸≤ V

n→ W , with T ̸∼ V , T ≤ V,m ⊑ n,U ≤ W ;

6. T
m→ U ̸≤ V

n→ W , with V ≤ T,m ⊑ n,U ̸∼ W,W ≤ U ;

7. Skip ̸≤ End and End ̸≤ Skip;

8. ?T ̸≤ !T and !T ̸≤ ?T ;

9. ?T ̸≤ ?U , with T ̸∼ U,U ≤ T ;

10. !T ̸≤ !U , with T ̸∼ U, T ≤ U ;
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11. ⊕{ℓ:Tℓ}ℓ∈L ̸≤ ⊕{k:Tk}k∈K if L ⊊ K and Tj ≤ Uj(∀j ∈ L);

12. N{ℓ:Tℓ}ℓ∈L ̸≤ N{k:Tk}k∈K if K ⊊ L and Tj ≤ Uj(∀j ∈ K).

Proof. By observation of the syntactic subtyping rules in Fig. 5.1.

If i = 0, we generate one of the pairs in Item 1 of Theorem 8.1.2 or Item 1 of Theorem 8.1.1.

Otherwise, if i ≥ 1, we use one of the items in Theorem 8.1.1 and randomly inject an invalid pair

derived from Theorem 8.1.2 where a valid one is supposed to be generated. Naturally, this may

result in a valid pair. In that case, when testing, we simply discard the result and try again until an

invalid type is found (we can do this since the algorithm is sound and we are simply interested in

evaluating its performance).

Example 8.1.1. Suppose i = 4. We randomly choose Item 5 of Theorem 8.1.1 to generate a pair

of sequential compositions (S1;R1, S2;R2). We proceed in the valid path for the types before the

semicolon, obtaining S1 = !Int;Skip and S2 = !Int, but inject an invalid pair in R1 and R2. To

generate (R1, R2), we randomly choose Item 5 of Theorem 8.1.1. Here we generate a valid pair

(T,U) using Theorem 8.1.1 and ensuring T and V are not equivalent, then multiplicities m and

n such that m ⊑ n, and finally another valid pair (V,W ). Thus we obtain R1 = T
m→ U and

R2 = V
n→ W , making (S1;R1, S2;R2) an invalid pair. Observe, however, that if we happened

to generate S1 = End and S2 = End;Skip, then (S1;R1, S2;R2) would be a valid pair, and its test

result would be discarded.

Conducting the evaluation

Finally, we conducted our evaluation by taking the running time of the algorithm on 2000 valid

pairs and 2000 invalid pairs, ranging from 2 to 730 total type constructors. Since the algorithm

may not terminate, we set a timeout of 30s. The results are plotted in Figure 8.1a. Despite the

incompleteness of the algorithm, we encountered no failed tests, but obtained 200 timeouts. We

found, as expected, that the running time increases considerably with the number of nodes. When

a result was produced, valid pairs took generally longer than invalid pairs. On the other hand, we

found that pairs originating from the invalid generator produced the largest number of timeouts,

with 186 of 200 attributed to them.

8.2 Program testing

Randomly generated types allow for a robust analysis, but they typically do not reflect the types

encountered by a subtyping algorithm in its most obvious practical application: a programming

language compiler. For this reason, we turn our attention to our suite of FreeST programs, com-

prised of 286 valid and invalid programs collected throughout the development of the FreeST

language. Programs range from small examples demonstrating particular features of the language

to concurrent applications simulating, for example, an FTP server.
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(a) Performance on valid and invalid subtyping
pairs

(b) Performance comparison against the original
equivalence algorithm

Figure 8.1: Performance evaluation and comparison

We began by integrating the algorithm in the FREEST compiler, placing next to every call

to the original algorithm [5] (henceforth equivT) a call to subT on the same pairs of types, both

algorithms equipped with optimization 1. from Section 6.4 (eliminating redundant productions

in the grammar). We then ran each program in our suite 10 times, collecting and averaging the

accumulated running time of both algorithms on the same pairs of types. We then took the differ-

ence between the average accumulated running times of subT and equivT, obtaining an average

difference of -3.85ms, with a standard deviation of 7.08ms, a minimum difference of -71.29ms

and a maximum difference of 8.03ms (subT performed faster, on average). Fig. 8.1b illustrates

this comparison by plotting against each other the accumulated running times (for clarity, those in

the 20-100ms range) of both algorithms during the typechecking phase of each.

The data collected from the program suite suggests that replacing the original equivalence al-

gorithm [5] with the subtyping algorithm in the FREEST type checker incurs virtually no overhead,

and greatly increases the number of programs it accepts. Still, however promising these results,

we cannot ignore the inherent incompleteness of our algorithm, nor the timeouts we observed in

the random tests. For this reason, and as described in the previous chapter, we included a timeout

policy in its implementation, as well as a mechanism to choose whether to use subtyping, or to

rely solely on equivalence (for which there is a sound, complete and terminating algorithm).



Chapter 8. Evaluating the algorithm 78



Chapter 9

Conclusion and future work

Subtyping context-free session types comes with challenges that are not encountered when sub-

typing their less expressive regular counterparts: we must account for the algebraic properties

introduced by the generalized sequencing operator (;), while dealing with the complexities of the

non-tail recursion it allows. Together, these challenges make undecidable the problem of check-

ing whether an arbitrary context-free session type is a subtype of another, as previous work by

Padovani [82] shows. This is the unfortunate—yet usual—price to pay for expressive power.

Despite these challenges, we propose a syntactic, inference rule-based notion of subtyping

for context-free session types. Finding it unsuitable for algorithmic treatment, we then propose a

coinciding semantic notion, based on a novel form of observational pre-order we call XYZW-

simulation, a generalization of XY-simulation proposed by Aarts and Vaandrager [1]. This notion

of simulation allows the selective combination of the requirements of plain simulation and its in-

verse, along with a strong form of contra-simulation, which enables it to model the full covariance

and contravariance expected from the choice and input/output constructors of context-free session

types (by contrast, the notion of subtyping proposed by Padovani does not allow variance in the

input/output constructors).

Semantic equivalence for context-free session types is usually based on bisimilarity [83],

which XYZW-similarity generalizes. Taking advantage of this fact, we derive a subtyping al-

gorithm from the existing type bisimilarity algorithm of Almeida et al. [5]. Our algorithm is sound

but, due to the undecidability of our notion of subtyping, necessarily incomplete.

We then implemented our algorithm in the freely available compiler for the FREEST program-

ming language [2, 4, 95], which supports context-free session types and features an implementa-

tion of the equivalence algorithm of Almeida et al. [5]. In order to evaluate the correctness and

performance of our implementation, we employed a suite of 4000 tests, generated automatically

with the aid of the QuickCheck library for Haskell [22]. No tests failed, and we obtained satisfac-

tory performance, observing only 200 timeouts. For a more realistic evaluation, and in order to

compare our adaptation to the original algorithm it replaced, we also measured the running times

of both algorithms on a suite of 286 FREEST programs without subtyping. We did not observe

any significant differences in performance, which, together with the previous results, suggests that

our algorithm is viable for practical use.
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Future work

Partial correctness Despite its unavoidable incompleteness, which stems from the undecidabil-

ity of our notion of subtyping, our (semi-)algorithm has not yielded any false negatives. Thus, we

conjecture that is partially correct: it may not halt, but, when it does, the answer is correct. We

cannot, however, back this claim without careful analysis, which we leave for future work. We

believe such an analysis will advance the understanding of the subtyping problem by clarifying

the practical reasons for its undecidability.

Parametric polymorphism As shown by Thiemann and Vasconcelos [96], support for para-

metric polymorphism [44, 87] is paramount in practical applications of context-free session types.

This feature allows software components to be given a “generic” type and is particularly useful

to avoid code duplication, since it lets functions that don’t depend on the type of their argument

be applied to a term of any type. It can be achieved by enriching the language of types with the

universal quantifier constructor ∀α. T , which binds occurences of variable α in T and allows them

to be substituted by a concrete type when necessary. For example, instead of having an identity

function for every type (Int → Int, Bool → Bool, etc.), programmers can write a single function

of type ∀α. α → α, and later instantiate it to whatever type is necessary. With context-free session

types, this feature is actually necessary to be able to type functions that recur on non-regular ses-

sion types. As Thiemann and Vasconcelos exemplify [96], a recursive function that sends a Tree

along a SerializeTree channel must be polymorphic on both the continuation of the channel and its

return type (i.e., have type ∀α.Tree → SerializeTree;α → α) since, roughly stated, the recursive

call of the left branch of the tree needs to return the channel on which the recursive call for the

right branch will be made. While in common type systems subtyping and parametric polymor-

phism can be taken as orthogonal features, it is not clear if it this is also the case in type systems

with context-free session types, which rely on kinds (the “types of types”) to distinguish between

functional types and session types, and control the linearity of variables. Clarifying this question

is therefore a natural avenue for future work.

Bounded quantification Despite being usually orthogonal, subtyping and parametric polymor-

phism can be deliberately coupled in the form of bounded quantification [17]. This feature allows

placing a subtyping constraint on a universally quantified variable (written ∀α ≤ T.U ), effectively

limiting types with which a polymorphic type can be instantiated (subtypes of T only). This re-

sults in significantly more expressive type systems: whereas an unbounded polymorphic function

cannot depend on the type of its argument, the type information provided by a subtype constraint

allows a bounded polymorphic functions to safely act upon its argument as if it had the type spec-

ified by the bound (e.g., access the name field if the bound is Person). Bounded quantification in

the presence of regular session types has previously been investigated by Gay [40]. Extending his

work to the context-free setting is another natural path to follow.
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Appendix A

Groundwork for the proofs

A.0.1 Substitution

The following lemma shows that we can discard type references from type formation contexts,

under the assumption that they do not occur free in the type in question.

Lemma A.0.1 (Type strengthening). Let x /∈ free(T ). If ∆, x ⊢ T , then ∆ ⊢ T .

Proof. By rule induction on the hypothesis.

The following lemma shows that substitution preserves the good properties of types: termina-

tion, contractivity and type formation. From it follows that these properties are also preserved by

the unr function (Definition 6.1.1).

Lemma A.0.2 (Type substitution). Suppose that ∆ ⊢ U .

1. If ∆, x ⊢ T and T✓, then [U/x]T✓.

2. If ∆, x ⊢ T and T@@✓ , then [U/x]T@@✓ .

3. If ∆, x, y ⊢ T and T contr y and y /∈ free(U), then [U/x]T contr y.

4. If ∆, x ⊢ T then ∆ ⊢ [U/x]T .

Proof.

1. By rule induction on T✓.

2. By structural induction on T . All cases are either straightforward or follow from the induc-

tion hypothesis.

3. By rule induction on T contr y, using Item 1 and Item 2. All cases follow from the induction

hypothesis except the case for rule C-VAR, where we have T = z with z ̸= x, y, and where

the result follows from hypothesis z contr y.

4. By rule induction on ∆, x ⊢ T . For the case TF-REC we have T = µy.V . The premises

to the rule are V@@✓ , V contr y and ∆, x, y ⊢ V . Induction on the third premise gives

∆, y ⊢ [U/x]V . Item 2 gives [U/x]V@@✓ , while Item 3 gives [U/x]V contr y. Rule TF-REC

gives ∆ ⊢ µy.([U/x]V ). Conclude with the definition of substitution. For the case TF-VAR

with T = y ̸= x, we have x /∈ free(y). The result follows from hypothesis ∆, x ⊢ y and

strengthening. For TF-VAR with T = x the result follows from the hypothesis ∆ ⊢ U .
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A.0.2 Unraveling

By inspecting definition of the unr function (Definition 6.1.1), we get the following immediate

result.

Proposition A.0.1. If T = unr(T ), then T is one of Unit, U m→ V , Lℓ:TℓMℓ∈L, x, ♯U , ⊙{ℓ:Sℓ}ℓ∈L,

♯U ;S, Skip or End. If T ̸= unr(T ), then T is one of µx.U , ⊙{ℓ:Sℓ}ℓ∈L;S, (S1;S2);S3, Skip;S,

End;S or (µs.S);R.

We can also define the notion of one-step unraveling for our types.

Definition A.0.1. We say that a type T ′ is a one-step unraveling of another type T , denoted

unr1(T ), if: T is a direct application of a type constructor, and T ′ = T ; or T is not a direct

application of a type constructor, and T ′ is obtained by one recursive call of the unr function,

which attempts to bring a type constructor into the front of a type.

One example is unr1(Skip;S) = S; another example is unr1((S1;S2);S3) = S1;(S2;S3). No-

tice that T0 is contractive iff any sequence T0, T1, ..., where Ti+1 = unr1(Ti), eventually stabilises

in unr(T ) (after finitely many steps).

Finally, we make some observations about the structure of subtyping derivations. We can

classify the syntactic subtyping rules from Fig. 5.1 in three groups: progressing, left-preserving

and right-preserving:

• We designate rules S-UNIT, S-ARROW, S-RCD, S-VRT, S-IN, S-OUT, S-INTCHOICE, S-

EXTCHOICE, S-END, S-SKIP, S-ENDSEQ1L, S-ENDSEQ1R, S-ENDSEQ2, S-INSEQ1L,

S-OUTSEQ1L, S-INSEQ1R, S-OUTSEQ1R, S-INSEQ2 and S-OUTSEQ2 as progressing.

These rules consume the types on both sides of the relation, i.e., if we apply one of these

rules from judgement T ≤ U , we end up with judgements T ′ ≤ U ′ where T ′, U ′ are both

proper subterms of T,U . Moreover, they are applicable iff T = unr(T ) and U = unr(U).

• We designate rules S-RECL, S-SKIPSEQL, S-CHOICESEQL, S-SEQSEQL, S-RECSEQL

as right-preserving. These rules change the type on the left-hand side of the relation, but

preserve the type on the right-hand side. They are applicable when T ̸= unr(T ).

• We designate rules S-RECR, S-SKIPSEQR, S-CHOICESEQR, S-SEQSEQR, S-RECSEQR

are left-preserving. These rules change the type on the right-hand side of the relation, but

preseve the type on the left-hand side. They are applicable when U ̸= unr(U).

Furthermore, by inspecting the rules, we can gather that:

• If we can apply a progressing rule for T ≤ U , then it is the only applicable rule.

• If we can apply a left-preserving rule for T ≤ U , then this the only left-preserving rule that

can be applied (but a right-preserving rule may also be applicable).

• If we can apply a right-preserving rule for T ≤ U , then this the only right-preserving rule

that can be applied (but a left-preserving rule may also be applicable).

• If we can apply both a left-preserving rule and a right-preserving rule for T ≤ U , then we

can apply them one after the other in any order. Furthermore, both rules must eventually be

applied in any successful derivation for T ≤ U .
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From these observations we can immediately derive the following results.

Lemma A.0.3.
1. Let T ′ = unr1(T ) for some type T .

(a) If ∆ ⊢ T , then ∆ ⊢ T ′.

(b) T ≤ U iff T ′ ≤ U .

(c) T
a−→ U iff T ′ a−→ U .

2. Let T ′ = unr(T ) for some type T .

(a) If ∆ ⊢ T , then ∆ ⊢ T ′.

(b) T ≤ U iff T ′ ≤ U .

(c) T
a−→ U iff T ′ a−→ U .

Proof. Sub-item 1.a is immediate by inspection of the type formation rules. Sub-item 1.b follows

from the preceding discussion. Sub-item 1.c is immediate by inspection of the LTS rules (Fig. 4.4).

Item 2 follows from Item 1 since unr(T ) is reached in a finite number of steps.





Appendix B

Proof of Theorem 5.1.1

Theorem 5.1.1. The syntactic subtyping relation ≤ is a preorder on types.

Proof. We need to prove reflexivity and transitivity.

Reflexivity We prove by coinduction that T ≤ T for every type T s.t. ⊢ T . Consider the

following relation.

R = {(T, T ) | ⊢ T}

∪ {(T, T ′) | ⊢ T and T ′ = unr1(T )}

We shall prove that R is backward-closed for the rules of syntactic subtyping. This will show that

R ⊆ ≤ and, consequently, that T ≤ T for every type T .

Let (T, T ) ∈ R. We consider first the cases in which T fits a type constructor, i.e., T =

unr(T ). Given that T is well-formed, we have the following case analysis for it:

(Case T = Unit): We apply axiom S-UNIT to (T, T ).

(Case T = U
m→ V ): We apply rule S-ARROW to (T, T ), arriving at goals (U,U) and (V, V ).

Since the derivation of ⊢ T must use rule TF-ARROW, we also have that ⊢ U and ⊢ V , and

therefore that (U,U), (V, V ) ∈ R.

(Case T = {ℓ:Tℓ}ℓ∈L): We apply rule (S-RCD and arrive at goals (Tk, Tk) for each k ∈ L.

The derivation of ⊢ T must use rule TF-RCDVRT, which implies that ⊢ Tk for each k ∈ L, which

means that (Tk, Tk) ∈ R for each k ∈ R.

(Case T = ⟨ℓ:Tℓ⟩ℓ∈L): Analogous to case T = {ℓ:Tℓ}ℓ∈L.

(Case T = x): Cannot occur, for �⊢x.

(Case T = End): We apply axiom S-END to (T, T ).

(Case T = ?U ): We apply rule S-IN to (T, T ), arriving at goal (U,U). Since the derivation

of ⊢ T must use rule TF-MSG, we have that ⊢ U , and therefore that (U,U) ∈ R.

(Case T = ⊕{ℓ:Tℓ}ℓ∈L): Analogous to case T = {ℓ:Tℓ}ℓ∈L.

(Case T = N{ℓ:Tℓ}ℓ∈L): Analogous to case T = {ℓ:Tℓ}ℓ∈L.

(Case T = Skip): We apply axiom S-SKIP to (T, T ).

(Case T = ?U ;S): We apply rule S-INSEQ2, arriving at goals (U,U), (S, S). The derivation

of ⊢ T must use rule TF-SEQ, implying ⊢ ?U and ∆ ⊢ S. Moreover, the derivation of ⊢ ?U must
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use rule TF-MSG, implying ⊢ U . Since ⊢ U and ⊢ S, we have (U,U), (S, S) ∈ R. The case

where T = !U ;S is similar.

(Case T = s;S): Cannot occur, since ̸⊢ T .

Next, we consider cases in which T ̸= unr(T ).

(Case T = µx.U ): We apply rule S-RECR to (T, T ), arriving at goal (T, T ′) where T ′ =

[µx.U/x]U . Since T ′ = unr1(T ), we have that (T, T ′) ∈ R.

(Case T = End;S): We apply axiom S-ENDSEQ2.

(Case T = ⊙{ℓ:Sℓ}ℓ∈L;R): We apply rule S-CHOICESEQR to (T, T ), arriving at goal (T, T ′)

where T ′ = ⊙{ℓ:Sℓ;R}ℓ∈L. Since T ′ = unr1(T ), we have that (T, T ′) ∈ R.

(Case T = Skip;S): We apply rule S-SKIPSEQR, arriving at goal (T, S). Since S = unr1(T ),

we obtain that (T, S) ∈ R.

(Case T = (S1;S2);S3): We apply rule S-SEQSEQR, arriving at goal (T, T ′) where T ′ =

S1;(S2;S3). Since T ′ = unr1(T ), we obtain that (T, T ′) ∈ R.

(Case T = (µs.S);R): We apply rule S-RECSEQR to (T, T ), arriving at goal (T, T ′), where

T ′ = ([µs.S/s]S);R. Since T ′ = unr1(T ), we have that (T, T ′) ∈ R.

Next, we must consider cases (T, T ′) ∈ R where T ̸= T ′, which means, by definition, that

T ′ = unr1(T ) and therefore that T ̸= unr(T ). Given that ⊢ T , we have the following case analysis

for T .

(Case T = µx.U ): From Lemma A.0.2 follows that ⊢ [µx.U/x]U . Since T ′ = unr1(T ), we

know that T ′ = [µx.U/x]U . We apply rule S-RECL to (T, T ′), arriving at goal (T ′, T ′) ∈ R.

(Case T = End;S): Then T ′ = End. We apply axiom S-ENDSEQ1L to (T, T ′).

(Case T = ⊙{ℓ:Sℓ}ℓ∈L;R): The derivation of ⊢ T must use rules TF-SEQ and TF-CHOICE,

implying that ⊢ Sk for each k ∈ L and ⊢ U . Again by rule TF-SEQ, we get that ⊢ Sk;R for

each k ∈ L and thus, by rule TF-CHOICE, ⊢ ⊙{ℓ:Sℓ;R}ℓ∈L. Since T ′ = unr1(T ), we know that

T ′ = ⊙{ℓ:Sℓ;R}ℓ∈L. We apply rule S-CHOICESEQL to (T, T ′), arriving at goal (T ′, T ′) ∈ R.

(Case T = Skip;S): The derivation of ⊢ T must use rule TF-SEQ, implying that ⊢ S. Since

T ′ = unr1(T ), we know that T ′ = S. We apply rule E-SKIPSEQL to (T, T ′), arriving at goal

(T ′, T ′) ∈ R.

(Case T = (S1;S2);S3): The derivation of ⊢ T must use rule TF-SEQ, hence ⊢ S1, ⊢ S2,

⊢ S3. Therefore, by rule TF-SEQ also, we have ⊢ S1;(S2;S3). Since T ′ = unr1(T ), we know that

T ′ = S1;(S2;S3). We apply rule S-SEQSEQL to (T, T ′), arriving at goal (T ′, T ′) ∈ R.

(Case T = (µs.S);R): The derivation of ⊢ T must use rule TF-SEQ, implying that ⊢
µs.S and ⊢ R. From Lemma A.0.2 follows that ⊢ [µs.S/s]S. By rule TF-SEQ we get that

⊢ ([µs.S/s]S);R. Since T ′ = unr1(T ), we know that T ′ = ([µs.S/s]S);R. We apply rule

S-RECSEQL to (T, T ′), arriving at goal (T ′, T ′) ∈ R.

Transitivity We now prove by coinduction that, for all types T,U, V with ⊢ T,⊢ U,⊢ V , if

T ≤ U and U ≤ V , then T ≤ V . Consider the following relation.

R = {(T, V ) | ⊢ T,⊢ V and there exists U s.t. ⊢ U, T ≤ U and U ≤ V }
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We prove that R is backward closed for the rules of the syntactic subtyping relation, showing that

R ⊆ ≤. This will give the desired property.

We begin by assuming that no left-preserving rule applies to judgements T ≤ U . Otherwise,

we could apply its symmetric counterpart to judgement U ≤ V to get a different U ′ for which

T ≤ U ′ and U ′ ≤ V . Without loss of generality, our derivation for T ≤ U starts with a finite

sequence of left-preserving rules until we reach a type U ′ that can only be consumed. We could

then reach the same type U ′ by applying a symmetric sequence of right-preserving rules to the

derivation for U ≤ V . We can therefore assume that U is ready to be consumed.

Suppose now a derivation for T ≤ U starting with a right-preserving rule, after which we

get judgement T ′ ≤ U for some type T ′. Here we can apply the corresponding rule to (T, V ),

arriving at (T ′, V ), which is in R since T ′ ≤ U and U ≤ V . The case where U ≤ V starts with a

left-preserving rule can be handled similarly.

What if both derivations for T ≤ U and U ≤ V start with a progressing rule? In this case, we

need to inspect which rule is at the start of the derivation for T ≤ U .

(Case S-UNIT): Then T = Unit and U = Unit. The only progressing rule that can be applied

at U ≤ V is also S-UNIT, implying that V = Unit as well. Therefore, we can apply axiom

S-UNIT to (T, V ).

(Case S-ARROW): Then T = T1
m→ T2 and U = U1

n→ U2 for some T1, T2, U1, U2,m, n.

Furthermore, we have U1 ≤ T1 and T2 ≤ U2 and m ⊑ n. The only progressing rule that can be

applied to U ≤ V is also S-ARROW, implying that V = V1
o→ V2 for some V1, V2, o. Furthermore,

we have V1 ≤ U1, U2 ≤ V2 and n ⊑ o. By transitivity of ⊑ we obtain m ⊑ o. We apply rule

S-ARROW to (T, V ), arriving at goals (V1, T1), (T2, V2) ∈ R.

(Case S-RCD): Then T = {ℓ:Tℓ}ℓ∈L and U = {k:Uk}k∈K for some L,K, Ti, Uj , i ∈ L, j ∈
K. Furthermore, we have K ⊆ L, Tj ≤ Uj for j ∈ K. The only progressing rule that can

be applied to U ≤ V is also S-RCD, implying that V = {h:Vh}h∈H for some H,Vh, h ∈ H .

Furthermore, we have H ⊆ K Uh ≤ Vh for each h ∈ H . By transitivity of ⊆ we get H ⊆ L. We

apply rule S-RCD to (T, V ), arriving at goals (Th, Vh) ∈ R for each h ∈ H . Case S-INTCHOICE

is similar.

(Case S-VRT): Then T = ⟨ℓ:Tℓ⟩ℓ∈L and U = ⟨k:Uk⟩k∈K for some L,K, Ti, Uj , i ∈ L, j ∈
K. Furthermore, we have L ⊆ K, Tj ≤ Uj for j ∈ K. The only progressing rule that can

be applied to U ≤ V is also S-VRT, implying that V = ⟨h:Vh⟩h∈H for some H,Vh, h ∈ H .

Furthermore, we have K ⊆ H , Uh ≤ Vh for each h ∈ H . By transitivity of ⊆ we get L ⊆ H . We

apply rule S-VRT to (T, V ), arriving at goals (Th, Vh) ∈ R for each h ∈ H . Case S-EXTCHOICE

is similar.

(Case S-END): Then T = End and U = End. The two possible progressing rules for U ≤ V

are S-END and S-ENDSEQ1R. In the first case we have V = End, so we apply S-END to (T, V ).

In the second case we have V = End;S for some S, so we apply rule S-ENDSEQ1R to (T, V ).

(Case S-IN): Then T = ?T ′ and U = ?U ′ for some T ′, U ′. Furthermore, we have T ′ ≤ U ′.

The two possible progressing rules for U ≤ V are S-IN and S-INSEQ1R. In the first case, we
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have V = ?V ′ for some V ′. It follows that U ′ ≤ V ′. We apply rule S-IN to (T, V ), arriving at

goal (T ′, V ′) ∈ R. In the second case, we have V = ?V ′;S for some V ′ and S. It follows that

U ′ ≤ V ′ and S ≤ Skip. We apply rule S-INSEQ1R to (T, V ), arriving at goal (T ′, V ′) ∈ R. The

cases S-INSEQ1L, S-INSEQ1R, S-INSEQ2 are handled similarly.

(Case S-OUT): Then T = !T ′ and U = !U ′ for some T ′, U ′. Furthermore, we have U ′ ≤ T ′.

The two possible progressing rules for U ≤ V are S-OUT and S-OUTSEQ1R. In the first case,

we have V = !V ′ for some V ′. It follows that V ′ ≤ U ′. We apply rule S-OUT to (T, V ), arriving

at goal (V ′, T ′) ∈ R. In the second case, we have V = !V ′;S for some V ′ and S. It follows that

V ′ ≤ U ′ and S ≤ Skip. We apply rule S-OUTSEQ1R to (T, V ), arriving at goal (V ′, T ′) ∈ R.

The cases S-OUTSEQ1L, S-OUTSEQ1R, S-OUTSEQ2 are handled similarly.

(Case S-ENDSEQ1L): Then T = End;S and U = End for some S. The two possible pro-

gressing rules for U ≤ V are S-END and S-ENDSEQ1R. In the first case we have V = End, so

we can apply rule S-ENDSEQ1L to (T, V ). In the second case we have V = End;R for some R,

so we can apply rule S-ENDSEQ2 to (T, V ).

(Case S-ENDSEQ1R): Then T = End and U = End;S for some S. The two possible pro-

gressing rules for U ≤ V are S-ENDSEQ1L and S-ENDSEQ2. In the first case we have V = End,

so we can apply S-END to (T, V ). In the second case we have V = End;R for some R, so we can

apply S-ENDSEQ1R to (T, V ).

(Case S-ENDSEQ2): Then T = End;S and U = End;R for some S,R. The two possible

progressing rules for U ≤ V are S-ENDSEQ1L and S-ENDSEQ2. In the first case we have

V = End, so we can apply S-ENDSEQ1L to (T, V ). In the second case we have V = End;S′ for

some S′, so we apply S-ENDSEQ2 to (T, V ).
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Proof of Theorem 5.2.1

Theorem 5.2.1. For any X ,Y,Z,W , ⪯XYZW is a preorder relation on types.

Proof. We need to prove reflexivity and transitivity.

To prove reflexivity, we need to show that the identity relation, {(T, T ) | T is a type}, is a

subtype simulation. This can be done by simple case analysis on the form of T .

For transitivity, we need to demonstrate that if R1 and R2 are XYZW-simulations, then their

interleaved concatenation,

R = {(T, V ) |⊢ T,⊢ V and there is U s.t. ⊢ U and TR1U and UR2V or TR2U and UR1V },

is itself an XYZW-simulation.

We assume a pair (T, V ) ∈ R and analyze two cases: T a−→ T ′ for some a, T ′ and V
a−→ V ′

for some a, V ′.

In case T
a−→ T ′ we need to analyze subcases a ∈ X and a ∈ Z to ensure, respectively, that

Items 1 and 3 of Definition 5.2.3 are met.

(Case a ∈ X ): then we need to show that V a−→ V ′ with T ′RV ′. By definition of R, we

know that there is an U such that TR1U and UR2V or TR2U and UR1V , and therefore that

U
a−→ U ′ for some U ′ with T ′R1U

′ or T ′R2U
′. In the first case, UR2V gives us V a−→ V ′ for

some V ′ with U ′R2V
′, from which we conclude that (T ′, V ′) ∈ R. In the second case, UR1V

gives us V a−→ V ′ for some V ′ with U ′R1V
′, from which we conclude that T ′RV ′. Hence Item 1

of Definition 5.2.3 is met in both cases.

(Case a ∈ Z): then we need to show that V a−→ V ′ with V ′RT ′. By definition of R, we

know that there is an U such that TR1U and UR2V or TR2U and UR1V , and therefore that

U
a−→ U ′ for some U ′ with U ′R1T

′ or U ′R2T
′. In the first case, UR2V gives us V a−→ V ′ for

some V ′ with V ′R2U
′, from which we conclude that (T ′, V ′) ∈ R. In the second case, UR1V

gives us V a−→ V ′ for some V ′ with V ′R1U
′, from which we conclude that V ′RT ′. Hence Item 1

of Definition 5.2.3 is met in both cases.

In case V
a−→ V ′ we need to analyze subcases a ∈ Y and a ∈ W to ensure, respectively, that

Items 2 and 4 of Definition 5.2.3 are met.

(Case a ∈ Y): then we need to show that T a−→ T ′ with T ′RV ′. By definition of R, we

know that there is an U such that TR1U and UR2V or TR2U and UR1V , and therefore that
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U
a−→ U ′ for some U ′ with U ′R2V

′ or U ′R1V
′. In the first case, TR1U gives us T a−→ T ′ for

some T ′ with T ′R1U
′, from which we conclude that (T ′, V ′) ∈ R. In the second case, TR2U

gives us T a−→ T ′ for some T ′ with T ′R2U
′, from which we conclude that T ′RV ′. Hence Item 2

of Definition 5.2.3 is met in both cases.

(Case a ∈ W): then we need to show that T a−→ T ′ with V ′RT ′. By definition of R, we

know that there is an U such that TR1U and UR2V or TR2U and UR1V , and therefore that

U
a−→ U ′ for some U ′ with U ′R2V

′ or U ′R1V
′. In the first case, TR1U gives us T a−→ T ′ for

some T ′ with U ′R1T
′, from which we conclude that (T ′, V ′) ∈ R. In the second case, TR2U

gives us T a−→ T ′ for some T ′ with U ′R2T
′, from which we conclude that V ′RT ′. Hence Item 2

of Definition 5.2.3 is met in both cases.
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Appendix D

Proof of Theorem 5.2.2

Theorem 5.2.2 (Soundness and completeness for subtyping relations). Let ⊢ T and ⊢ U . Then

T ≤ U iff T ≲ U .

Proof. We analyse both directions of the biconditional separately.

Direct implication Consider the relation R = {(T,U) | ⊢ T , ⊢ U and T ≤ U}. We must

show that R is an XYZW-simulation with X ,Y,Z,W as defined in Definition 5.2.4. This will

show that R ⊆ ≤, and hence that T ≤ U implies T ≲ U .

The proof has two parts. First consider cases (T,U) ∈ R s.t. unr(T ) = T and unr(U) =

U . We proceed by case analysis for the last rule in the derivation of T ≤ U , which must be a

progressing rule.

(Case S-UNIT): Then T = Unit and U = Unit. The unique transition that can be applied to

Unit is Unit Unit−→ Skip (L-UNIT). Since Unit ∈ X ,Y , we should have that if T Unit−→ T ′ for some

T ′, then U
Unit−→ U ′ for some U ′ with (T ′, U ′) ∈ R, and also that if U Unit−→ U ′ for some U ′, then

T
Unit−→ T ′ for some T ′ with (T ′, U ′) ∈ R. It is readily verifiable that the single transitions of both

T and U match each other. That (Skip,Skip) ∈ R follows from S-SKIP and the definition of R.

(Case S-ARROW): Then T = T1
m→ T2, U = U1

n→ U2, U1 ≤ T1, T2 ≤ U2 and m ⊑ n.

The only transitions that can be applied to T are T
→d−→ T1, T →r−→ T2 and, if m = 1, T →1−→ Skip

(L-ARROWDOM, L-ARROWRNG and L-LINARROW). Similarly, the only transitions applicable

to U are U
→d−→ U1, U →r−→ U2 and, if n = 1, U →1−→ Skip.

Since→d ∈ Z,W , we should have that if T →d−→ T ′ for some T ′, then U
→d−→ U ′ for some

U ′ with (U ′, T ′) ∈ R, and also that if U
→d−→ U ′ for some U ′, then T

→d−→ T ′ for some T ′

with (U ′, T ′) ∈ R. That the transitions of T and U by→d match is readily verifiable, and that

(U1, T1) ∈ R is given by U1 ≤ T1 and the definition of R.

Similarly, since→r ∈ X ,Y , we should have that if T →r−→ T ′ for some T ′, then U
→r−→ U ′

for some U ′ with (T ′, U ′) ∈ R, and also that if U →r−→ U ′ for some U ′, then T
→r−→ T ′ for some

T ′ with (T ′, U ′) ∈ R. That the transitions of T and U by→r match is readily verifiable, and that

(T2, U2) ∈ R is given by T2 ≤ U2 and the definition of R.

Finally, as→1 ∈ X , we need to show that if T →1−→ T ′ for some T ′, then U
→1−→ U ′ for some

U ′ with (T ′, U ′) ∈ R. As we have seen, T can have at most one such transition, T →1−→ Skip,
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and only in the case where m = 1. From m ⊑ n follows that n = 1. From this follows that

U
→1−→ Skip. We arrive at pair (Skip,Skip), which is obviously in R.

(Case S-RCD): Then T = {ℓ:Tℓ}ℓ∈L, U = {k:Uk}k∈K and K ⊆ L. The only transitions

that can be applied to T are T
{}−→ Skip and T

{}i−→ Ti for each i ∈ L (L-RCDVRT and L-

RCDVRTFIELD). Similarly, the only transitions that can be applied to U are U
{}−→ Skip and

U
{}j−→ Uj for each j ∈ K. It is clear from the rules of type formation that ⊢ Ti and ⊢ Uj for each

i ∈ L, j ∈ K and, because S-RCD was used, we know Tj ≤ Uj for each j ∈ K.

Since {} ∈ X ,Y , we should have that if T
{}−→ T ′ for some T ′, then U

{}−→ U ′ for some

U ′ with (T ′, U ′) ∈ R, and also that if U
{}−→ U ′ for some U ′, then T

{}−→ T ′ for some T ′

with (T ′, U ′) ∈ R. That the transitions of T and U by {} match is readily verifiable, and that

(Skip, Skip) ∈ R is also evident.

Finally, since {}j ∈ Y for each j ∈ K, we need to show that if U
{}j−→ U ′ for some U ′, then

T
{}j−→ T ′ for some T ′ with (T ′, U ′) ∈ R. As K ⊆ L, it is readily verifiable that T matches every

transition of U by {}j for each j ∈ K. That (Tj , Uj) ∈ R follows by Tj ≤ Uj for each j ∈ K

and the definition of R.

(Case S-VRT): Then T = ⟨ℓ:Tℓ⟩ℓ∈L, U = ⟨k:Uk⟩k∈K and L ⊆ K. The only transitions

that can be applied to T are T
⟨⟩−→ Skip and T

⟨⟩i−→ Ti for each i ∈ L (L-RCDVRT and L-

RCDVRTFIELD). Similarly, the only transitions that can be applied to U are U
⟨⟩−→ Skip and

U
⟨⟩j−→ Uj for each j ∈ K. It is clear from the rules of type formation that ⊢ Ti and ⊢ Uj for each

i ∈ L, j ∈ K and, because S-VRT was used, we know Ti ≤ Ui for each i ∈ L.

Since ⟨⟩ ∈ X ,Y , we should have that if T
⟨⟩−→ T ′ for some T ′, then U

⟨⟩−→ U ′ for some

U ′ with (T ′, U ′) ∈ R, and also that if U
⟨⟩−→ U ′ for some U ′, then T

⟨⟩−→ T ′ for some T ′

with (T ′, U ′) ∈ R. That the transitions of T and U by ⟨⟩ match is readily verifiable, and that

(Skip, Skip) ∈ R is also evident.

Finally, since ⟨⟩i ∈ X for each i ∈ L, we need to show that if T
⟨⟩i−→ T ′ for some T ′, then

U
⟨⟩i−→ U ′ for some U ′ with (T ′, U ′) ∈ R. As L ⊆ K, it is readily verifiable that U matches every

transition of T by ⟨⟩i for each i ∈ L. That (Ti, Ui) ∈ R follows by Ti ≤ Ui for each i ∈ L and

the definition of R.

(Case S-END): Analogous to case S-UNIT.

(Case S-IN): Then T = ?T ′ and U = ?U ′. The only transitions that can be applied to T

are T
?p−→ T ′ and T

?c−→ Skip (L-MSG1, L-MSG2). Similarly, the only transitions that can be

applied to U are U
?p−→ U ′ and U

?c−→ Skip. It is clear from the rules of type formation that ⊢ T ′

and ⊢ U ′. Furthermore, because S-IN was used, T ′ ≤ U ′.

Since ?p, ?c ∈ X ,Y , we should have that if T
?p−→ T ′ for some T ′, then U

?p−→ U ′ for some

U ′ with (T ′, U ′) ∈ R, and similarly for ?c. We must also have that if U
?p−→ U ′ for some U ′, then

T
?p−→ T ′ for some T ′ with (T ′, U ′) ∈ R, and similarly for ?c. That the transitions of T and U

by ?p and ?c match is readily verifiable, and (T ′, U ′), (Skip, Skip) ∈ R follows from T ′ ≤ U ′,

S-SKIP and from the definition of R.

(Case S-OUT): Then T = !T ′ and U = !U ′. The only transitions that can be applied to T
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are T
!p−→ T ′ and T

!c−→ Skip (L-MSG1, L-MSG2). Similarly, the only transitions that can be

applied to U are U
!p−→ U ′ and U

!c−→ Skip. It is clear from the rules of type formation that ⊢ T ′

and ⊢ U ′. Furthermore, because S-OUT was used, U ′ ≤ T ′.

Since !p ∈ Z,W , we should have that if T
!p−→ T ′′ for some T ′′, then U

!p−→ U ′′ for some

U ′′ with (U ′′, T ′′) ∈ R, and also that if U
!p−→ U ′′ for some U ′′, then T

!p−→ T ′′ for some T ′′

with (U ′′, T ′′) ∈ R. That the transitions of T and U by !p match is readily verifiable, and that

(U ′, T ′) ∈ R is given by U ′ ≤ T ′ and the definition of R.

Finally, since !c ∈ X ,Y , we should have that if T !c−→ T ′ for some T ′, then U
!c−→ U ′ for

some U ′ with (T ′, U ′) ∈ R, and also that if U !c−→ U ′ for some U ′, then T
!c−→ T ′ for some

T ′ with (T ′, U ′) ∈ R. That the transitions of T and U by !c match is readily verifiable, and that

(Skip, Skip) ∈ R follows from S-SKIP and the definition of R.

(Case S-EXTCHOICE): Analogous to case S-VRT.

(Case S-INTCHOICE): Analogous to case S-RCD.

(Case S-SKIP): Then T = Skip and U = Skip. Since no transitions apply to Skip, the

conditions for XYZW-simulation trivially hold.

(Case S-ENDSEQ1L): Then T = End;S and U = End. The only transition that can be

applied to T is T End−→ Skip (L-ENDSEQ). Similarly, the only transition that can be applied to U

is U End−→ Skip (L-END).

Since End ∈ X ,Y , we should have that if T End−→ T ′ for some T ′, then U
End−→ U ′ for some

U ′ with (T ′, U ′) ∈ R, and also that if U
End−→ U ′ for some U ′, then T

End−→ T ′ for some T ′

with (T ′, U ′) ∈ R. That the transitions of T and U by End match is readily verifiable, and

(Skip, Skip) ∈ R follows from S-SKIP and the definition of R.

(Case S-ENDSEQ1R, S-ENDSEQ2): Analogous to case S-ENDSEQ1L.

(Case S-INSEQ1L): Then T = ?T ′;S and U = ?U ′. The only transitions that can be applied

to T are T
?p−→ T ′ and T

?c−→ S (L-MSGSEQ1, MSGSEQ2). Similarly, the only transitions that

can be applied to U are U
?p−→ U ′ and U

?c−→ Skip. It is clear from the rules of type formation

that ⊢ T ′,⊢ U ′ and ⊢ S. Furthermore, because S-INSEQ1L was used, T ′ ≤ U ′ and S ≤ Skip.

Since ?p, ?c ∈ X ,Y , we should have that if T
?p−→ T ′ for some T ′, then U

?p−→ U ′ for

some U ′ with (T ′, U ′) ∈ R, and similarly for ?c. For the same reason, we must also have that if

U
?p−→ U ′ for some U ′, then T

?p−→ T ′ for some T ′ with (T ′, U ′) ∈ R, and similarly for ?c. That

the transitions of T and U by ?p and ?c match is readily verifiable, and (T ′, U ′), (S,Skip) ∈ R
follows from T ′ ≤ U ′, from S ≤ Skip and from the definition of R.

(Case S-INSEQ1R, S-INSEQ2): Analogous to case S-INSEQ1L.

(Case S-OUTSEQ1L): Then T = !T ′;S and U = !U ′. The only transitions that can be applied

to T are T
!p−→ T ′ and T

!c−→ S (L-MSGSEQ1, MSGSEQ2). Similarly, the only transitions that

can be applied to U are U
!p−→ U ′ and U

!c−→ Skip. It is clear from the rules of type formation

that ⊢ T ′, ⊢ U ′ and ⊢ S. Furthermore, because S-OUTSEQ1L was used, U ′ ≤ T ′ and S ≤ Skip.

Since !p ∈ Z,W , we should have that if T
!p−→ T ′′ for some T ′′, then U

!p−→ U ′′ for some

U ′′ with (U ′′, T ′′) ∈ R, and also that if U
!p−→ U ′′ for some U ′′, then T

!p−→ T ′′ for some T ′′
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with (U ′′, T ′′) ∈ R. That the transitions of T and U by !p match is readily verifiable, and that

(U ′, T ′) ∈ R is given by U ′ ≤ T ′ and the definition of R.

Finally, since !c ∈ X ,Y , we should have that if T !c−→ T ′ for some T ′, then U
!c−→ U ′ for

some U ′ with (T ′, U ′) ∈ R, and also that if U !c−→ U ′ for some U ′, then T
!c−→ T ′ for some

T ′ with (T ′, U ′) ∈ R. That the transitions of T and U by !c match is readily verifiable, and

(S,Skip) ∈ R follows from S ≤ Skip and the definition of R.

(Case S-OUTSEQ1R, S-OUTSEQ2): Analogous to case S-OUTSEQ1L.

Now consider that T ̸= unr(T ). From T ≤ U follows that unr(T ) ≤ U , resulting from the

application of right-preserving rules. If U = unr(U), then the above case analysis shows that

the conditions for XYZW-simulation between unr(T ) and U hold. Since T and unr(T ) have

the same transitions, i.e., T a−→ T ′ iff unr(T ) a−→ T ′ for some T ′, the conditions for XYZW-

simulation between T and U also hold. Otherwise, if U ̸= unr(U), it similarly follows that

unr(T ) ≤ unr(U), resulting from the application of left-preserving rules. The previous case anal-

ysis shows that the conditions for XYZW-simulation between unr(T ) and unr(U) hold. Since U

and unr(U) have the same transitions, the same conditions also hold between T and U . The case

with T = unr(U), U ̸= unr(U) is analogous.

Reverse implication Consider the relation S = {(T,U) | ⊢ T , ⊢ U and T ≲ U}. We prove

that relation S is backward closed for the rules of the syntactic subtyping relation. This will show

that S ⊆ ≤, and hence that T ≲ U implies T ≤ U .

The proof has two parts. First, consider the cases where both T and U fit a type constructor,

i.e., T = unr(T ) and U = unr(U). We proceed by case analysis on the structure of T .

(Case T = Unit): The only transition that applies to T is T
Unit−→ Skip. Since T ≲ U and

U = unr(U), then U = Unit. Therefore we can apply S-UNIT.

(Case T = T1
m→ T2): Two transitions apply to T regardless of m: T →d−→ T1 and T

→r−→ T2.

Since T ≲ U and U = unr(U), we know that U = U1
n→ U2 and that, regardless of n, U →d−→ U1

and U
→r−→ U2. Furthermore, we know that U1 ≲ T1 (since→d ∈ Z,W) and that T2 ≲ U2 (since

→r ∈ X ,Y).

Before we apply S-ARROW, we need to have m ⊑ n. We know that T →1−→ Skip iff m = 1

and that U →1−→ Skip iff n = 1. Recall that→1 ∈ X , which means that the only case where n ̸⊑ m

(m = 1 and n = ∗) cannot occur, for it would contradict T ≲ U (since U could not match a

transition of T by a label in X ).

We can therefore apply S-ARROW, arriving at (U1, T1), (T2, U2) ∈ S.

(Case T = {ℓ:Tℓ}ℓ∈L): The only transitions that can be applied to T are T
{}−→ Skip and

T
{}i−→ Ti for each i ∈ L. Since T ≲ U and U = unr(U), we have U = {k:Uk}k∈K with

transitions U
{}−→ Skip and U

{}j−→ Uj for j ∈ K. Since labels of the form {}ℓ belong to Y , we

know that K ⊆ L, for T must be able to match all transitions of U by {}j for each j ∈ K. From

this we obtain Tj ≲ Uj for each j ∈ K, arriving at (Tj , Uj) ∈ S for each j ∈ K.

(Case T = ⟨ℓ:Tℓ⟩ℓ∈L): The only transitions that can be applied to T are T
⟨⟩−→ Skip and
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T
⟨⟩i−→ Ti for each i ∈ L. Since T ≲ U and U = unr(U), we have U = ⟨k:Uk⟩k∈K with

transitions U
⟨⟩−→ Skip and U

⟨⟩j−→ Uj for j ∈ K. Since labels of the form ⟨⟩ℓ belong to X , we

know that L ⊆ K, for U must be able to match all transitions of T by ⟨⟩i for each i ∈ L. From

this we obtain Ti ≲ Ui for each i ∈ L, arriving at (Ti, Ui) ∈ S for each i ∈ L.

(Case T = x): Cannot occur, since ̸⊢ T .

(Case T = End): Analogous to the case where T = Unit.

(Case T = ?T ′): The only transitions applicable to T are T
?p−→ T ′ and T

?c−→ Skip. Since

T ≲ U and U = unr(U), then either U = ?U ′ or U = ?U ′;V with V ≲ Skip. In either case,

T ′ ≲ U ′. In the first case, we can apply S-IN, arriving at (T ′, U ′) ∈ S. In the second case, we can

apply S-INSEQ1R, arriving at (T ′, U ′), (V,Skip) ∈ S.

(Case T = !T ′): The only transitions applicable to T are T
!p−→ T ′ and T

!c−→ Skip. Since

T ≲ U and U = unr(U), then either U = !U ′ or U = !U ′;V with V ≲ Skip. In either case,

U ′ ≲ T ′. In the first case, we can apply S-OUT, arriving at (U ′, T ′) ∈ S. In the second case we

can apply S-OUTSEQ1R, arriving at (T ′, U ′), (V,Skip) ∈ S.

(Case T = ⊕{ℓ:Sℓ}ℓ∈L): Analogous to case T = {ℓ:Tℓ}ℓ∈L.

(Case T = N{ℓ:Sℓ}ℓ∈L): Analogous to case T = ⟨ℓ:Tℓ⟩ℓ∈L.

(Case T = Skip): No transitions apply to T . Since T ≲ U and U = unr(U), then U = Skip.

Therefore we can apply S-SKIP.

(Case T = ?T1;T2): The only transitions applicable to T are T
?p−→ T1 and T

?c−→ T2. Since

T ≲ U and U = unr(U), then either U = ?U1 or U = ?U1;U2. In the first case, T1 ≲ U1 and

T2 ≲ Skip; we can apply S-INSEQ1L, arriving at (T1, U1) ∈ S. In the second case, T1 ≲ U1 and

T2 ≲ U2; we can apply S-INSEQ2, arriving at (T1, U1), (T2, U2) ∈ S.

(Case T = !T1;T2): The only transitions applicable to T are T
!p−→ T1 and T

!c−→ T2. Since

T ≲ U and U = unr(U), then either U = !U1 or U = !?U1U2. In the first case, U1 ≲ T1 and

T2 ≲ Skip; we can apply S-OUTSEQ1L, arriving at (U1, T1) ∈ S. In the second case, U1 ≲ T1

and T2 ≲ U2; we can apply S-OUTSEQ2, arriving at (U1, T1), (T2, U2) ∈ S.

Now consider that T ̸= unr(T ). From T ≲ U it follows that T ′ ≲ U where T ′ = unr1(T ),

due to the fact that T and T ′ have the same transitions (Lemma A.0.3). Then we can apply

an appropriate right-preserving rule to (T,U), arriving at (T ′, U) ∈ S. The case with T =

unr(T ), U ̸= unr(U) is analogous.
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Appendix E

Proof of Theorem 6.1.1

We begin by presenting some preliminary results that will be needed for the main proof.

Lemma E.0.1. Let X⃗ and Y⃗ be words from a simple GNF grammar with productions P . If

X⃗ ∼P Y⃗ , then X⃗ ≲P Y⃗ and Y⃗ ≲P X⃗ .

Proof. Consider the relation R = {(X⃗, Y⃗ ) | X⃗ ∼P Y⃗ }. We want to show that R ⊆ ≲P and

R ⊆ ≲−1
P .

To show that R ⊆ ≲P , we show that for all (X⃗, Y⃗ ) ∈ R: for every label a ∈ X ∪Z and word

X⃗ , if X⃗ a−→P X⃗ ′, then there exists a word Y⃗ ′ s.t. Y⃗
a−→P Y⃗ ′ and (X⃗ ′, Y⃗ ′) ∈ R if a ∈ X , or

otherwise (Y⃗ ′, X⃗ ′) ∈ R if a ∈ Z; and, for every label a ∈ Y∪W and word Y⃗ , if Y⃗ a−→P Y⃗ ′, then

there exists a word X⃗ ′ s.t. X⃗ a−→P X⃗ ′ and (X⃗ ′, Y⃗ ′) ∈ R if a ∈ Y , or otherwise (Y⃗ ′, X⃗ ′) ∈ R if

a ∈ W .

First, let there be a ∈ X and X⃗ ′ s.t. X⃗ a−→ X⃗ ′. Since X⃗ ∼P Y⃗ , we know there is a Y⃗ ′ s.t.

Y⃗
a−→P Y⃗ ′ and X⃗ ′ ∼P Y⃗ ′ and hence that (X⃗ ′, Y⃗ ′) ∈ R.

Next, let there be a ∈ Y and Y⃗ ′ s.t. Y⃗
a−→ Y⃗ ′. Since X⃗ ∼P Y⃗ , we know there is a X⃗ ′ s.t.

X⃗
a−→ X⃗ ′ and X⃗ ′ ∼P Y⃗ ′. Hence (X⃗ ′, Y⃗ ′) ∈ R.

Now let there be a ∈ Z and X⃗ ′ s.t. X⃗
a−→ X⃗ ′. Since X⃗ ∼P Y⃗ , we know there is a Y⃗ ′ s.t.

Y⃗
a−→ Y⃗ ′ and X⃗ ′ ∼P Y⃗ ′. By the symmetry of ∼P we get Y⃗ ′ ∼P X⃗ ′, and therefore (Y⃗ ′, X⃗ ′) ∈ R.

Finally, let there be a ∈ W and Y⃗ ′ s.t. Y⃗
a−→ Y⃗ ′. Since X⃗ ∼P Y⃗ , we know there is a

X⃗ ′ s.t. X⃗
a−→ X⃗ ′ and X⃗ ′ ∼P Y⃗ ′. By the symmetry of ∼P we get Y⃗ ′ ∼P X⃗ ′, and therefore

(Y⃗ ′, X⃗ ′) ∈ R.

We proceed similarly to show that R ⊆ ≲−1
P . For all (X⃗, Y⃗ ) ∈ R: for every label a ∈ X ∪ Z

and type Y⃗ ′, if Y⃗ a−→P Y⃗ ′, then there exists a word X⃗ ′ s.t. X⃗
a−→P X⃗ ′ and (X⃗ ′, Y⃗ ′) ∈ R if

a ∈ X , or otherwise (Y⃗ ′, X⃗ ′) ∈ R if a ∈ Z; and, for every label a ∈ Y ∪ W and word X⃗ ′, if

X⃗
a−→P X⃗ ′, then there exists a word Y⃗ ′ s.t. Y⃗ a−→P Y⃗ ′ and (X⃗ ′, Y⃗ ′) ∈ R if a ∈ Y , or otherwise

(Y⃗ ′, X⃗ ′) ∈ R if a ∈ W .

First, let there be a ∈ X and Y⃗ ′ s.t. Y⃗
a−→ Y⃗ ′. Since X⃗ ∼P Y⃗ , we know there is a X⃗ ′ s.t.

X⃗
a−→P X⃗ ′ and X⃗ ′ ∼P Y⃗ ′. Hence (X⃗ ′, Y⃗ ′) ∈ R.

Next, let there be a ∈ Y and X⃗ ′ s.t. X⃗ a−→ X⃗ ′. Since X⃗ ∼P U , we know there is a Y⃗ ′ s.t.

Y⃗
a−→P Y⃗ ′ and X⃗ ′ ∼P Y⃗ ′. Hence (X⃗ ′, Y⃗ ′) ∈ R.
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Now let there be a ∈ Z and Y⃗ ′ s.t. Y⃗
a−→ Y⃗ ′. Since X⃗ ∼ Y⃗ , we know there is a X⃗ ′

s.t. X⃗
a−→ X⃗ ′ and X⃗ ′ ∼P Y⃗ ′. By the symmetry of ∼P we get Y⃗ ′ ∼P X⃗ ′, and therefore

(Y⃗ ′, X⃗ ′) ∈ R.

Finally, let there be a ∈ W and X⃗ ′ s.t. X⃗
a−→ X⃗ ′. Since X⃗ ∼ Y⃗ we know there is Y⃗ ′ s.t.

Y⃗
a−→ Y⃗ ′ and X⃗ ′ ∼ Y⃗ ′. By the symmetry of ∼P we get Y⃗ ′ ∼P X⃗ ′, and therefore (Y⃗ ′, X⃗ ′) ∈

R.

Lemma E.0.2. Let T be a type and let N be the set of non-terminal symbols in the simple GNF

grammar grm(T,P0) for any P0. For every X⃗, Y⃗ ∈ N ∗ we have that X⃗ ∼P X⃗⊥Y⃗ .

Proof. Immediate from the fact that ⊥ has no productions.

Lemma E.0.3 (The behaviours of types and their words coincide). Let ⊢ T and (X⃗T ,P) =

grm(T,P0) for some P0. Then,

• If T a−→ U for some U , then there exists X⃗ ′ such that X⃗T
a−→P X⃗ ′ and X⃗U ∼P X⃗ ′, where

(X⃗U ,P ′) = grm(U,P);

• If X⃗T
a−→P X⃗ ′ for some X⃗ ′, then there exists U such that T a−→ U and X⃗ ′ ∼P X⃗U , where

(X⃗U ,P ′) = grm(U,P).

Proof. Let us define the relation

R = {(T, Y⃗ ) | X⃗T ∼P Y⃗ , where (X⃗T ,P) = grm(T, ∅)}.

We now prove that R is backward closed for the transition relations, showing the desired property.

We begin by considering the cases in which T fits a type constructor, i.e., T = unr(T ). We have

the following case analysis for T .

(Case T = Unit): by rule L-UNIT, the LTS at T has the unique transition T
Unit−→ Skip.

Similarly, the LTS at X⃗T has the unique transition X⃗T
Unit−→P ε. Since X⃗T ∼P Y⃗ , the LTS at Y⃗

has the unique transition Y⃗
Unit−→P Y⃗ ′ for some Y⃗ such that Y⃗ ∼P ε. Since word(Skip) = ε, we

have word(Skip) ∼P Y⃗ ′ and therefore (Skip, Y⃗ ′) ∈ R.

(Case T = U
∗→ V ): By rules L-ARROWDOM and L-ARROWRNG, we know that T has

exactly two transitions: T →d−→ U and T
→r−→ V (rule L-LINARROW does not apply). Similarly,

the LTS at X⃗T has exactly two transitions: X⃗T
→d−→P word(U) and X⃗T

→r−→P word(V ). Since

X⃗T ∼P Y⃗ , the LTS at Y⃗ has exactly two transitions, Y⃗ →d−→P Y⃗1 and Y⃗
→d−→P Y⃗2 for some Y⃗1, Y⃗2

s.t. Y⃗1 ∼P word(U) and Y⃗2 ∼P word(V ). Hence (U, Y⃗1), (V, Y⃗2) ∈ R.

(Case T = U
1→ V ): Similar to the previous case, but the LTS at T has a single additional

transition in T
→1−→ Skip, as does the LTS at X⃗T in X⃗T

→1−→P ε. Since X⃗T ∼P Y⃗ , we know Y⃗

also has an additional transition, Y⃗ →1−→P Y⃗ ′ for some Y⃗ ′ s.t. Y⃗ ′ ∼P ε. Since word(Skip) = ε,

we have (Skip, Y⃗ ′) ∈ R.

(Case T = Lℓ:T Mℓ∈L): By rules L-RCDVRT and L-RCDVRTFIELD, the LTS at T has exactly

the transitions T
LM✓−→ Skip and T

LMk−→ Tk for each k ∈ L. Similarly, the LTS at X⃗T has exactly

the transitions X⃗T
LM✓−→P ⊥ and X⃗T

LMk−→P word(Tk) for each k ∈ L. Since X⃗T ∼P Y⃗ , the LTS
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at Y⃗ has exactly the transitions Y⃗
LMk−→P Y⃗k for some Y⃗k s.t. word(Tk) ∼P Y⃗ for each k ∈ L

and additionally Y⃗
LM✓−→P Y⃗✓ for some Y⃗✓ s.t. Y⃗✓ ∼P ⊥. It follows that (Tk, Y⃗k) ∈ R for each

k ∈ L. Observe that, since neither ε or ⊥ have any transitions, we have ε ∼P ⊥. From this and

word(Skip) = ε it follows that (Skip, Y⃗✓) ∈ R.

(Case T = x): Cannot occur, since ̸⊢ x.

(Case T = End): by rule L-END, the LTS at T has the unique transition T
End−→ Skip. Simi-

larly, the LTS at X⃗T has the unique transition X⃗T
End−→P ⊥. Since X⃗T ∼P Y⃗ , the LTS at Y⃗ has the

unique transition Y⃗
End−→P Y⃗ ′ for some Y⃗ such that Y⃗ ∼P ⊥. Since word(Skip) = ε and ε ∼P ⊥,

we have word(Skip) ∼P Y⃗ ′ and therefore (Skip, Y⃗ ′) ∈ R.

(Case T = ♯U ): By rule L-MSG, the LTS at T has exactly two transitions T
♯p−→ U and

T
♯c−→ Skip. Similarly, the LTS at X⃗T has exactly two transitions X⃗T

♯p−→P word(U)⊥ and

X⃗T
♯c−→P ε. Since X⃗T ∼P Y⃗ , the LTS at Y⃗ has exactly two transitions Y⃗

♯p−→P Y⃗1 and

Y⃗
♯c−→P Y⃗2 for some Y⃗1, Y⃗2 s.t. word(U)⊥ ∼P Y⃗1 and ε ∼P Y⃗2. By Lemma E.0.2, we have

word(U) ∼P word(U)⊥ ∼P Y⃗1, and by the definition of grm, word(Skip) ∼P ε ∼P Y⃗2. Hence

(U, Y⃗1), (Skip, Y⃗2) ∈ R.

(Case T = ⊙{ℓ:T}ℓ∈L): By rules L-RCDVRT and L-RCDVRTFIELD, the LTS at T has

exactly the transitions T
⊙✓−→ Skip and T

⊙k−→ Tk for each k ∈ L. Similarly, the LTS at X⃗T has

transitions X⃗T
⊙✓−→P ⊥ and X⃗T

⊙k−→P word(Tk) for each k ∈ L. Since X⃗T ∼P Y⃗ , the LTS at

Y⃗ has exactly the transitions Y⃗
⊙✓−→P Y⃗✓ for some Y⃗✓ s.t. Y⃗✓ ∼P ⊥ and Y⃗

⊙k−→P Y⃗k for some

Y⃗k s.t. word(Tk) ∼P Y⃗k for each k ∈ L. Since ⊥ has no productions, we have ⊥ ∼P ε and by

transitivity Y⃗ ∼P ε. Hence (Skip, Y⃗✓) ∈ R and (Tk, Y⃗k) ∈ R for each k ∈ L.

(Case T = ♯U ;S): By rules L-MSGSEQ1 and L-MSGSEQ2, the LTS at T has exactly two

transitions, T
♯p−→ U and T

♯c−→ S. Given that word(T ) = word(♯U) ·word(S) and that word(♯U)

yields exactly two productions word(♯U) → ♯pword(U)⊥ and word(♯U) → ♯cword(S), we have

for the LTS at X⃗T exactly two transitions XT
♯p−→P word(U)⊥word(S) and XT

♯c−→P word(S).

Since XT ∼P Y⃗ , the LTS at Y⃗ has exactly two transitions Y⃗
♯p−→P Y⃗1 and Y⃗

♯c−→P Y⃗2 for

some Y⃗1, Y⃗2 s.t. word(U)⊥word(S) ∼P Y⃗1 and word(S) ∼P Y⃗2. By Lemma E.0.2, we have

word(U) ∼P word(U)⊥word(S) ∼P Y⃗1. Hence (U, Y⃗1), (S, Y⃗2) ∈ R.

(Case T = x;S): Cannot occur, since ̸⊢ x;S.

Now we consider the cases in which T ̸= unr(T ). It is straightforward to check that the LTS

at T has a transition T
a−→ U iff the LTS at unr(T ) has a corresponding transition unr(T )

a−→
U (with the same U ). This is a consequence of the fact that the LTS rules for T essentially

follow its unfolding, which eventually terminates due to contractivity. On the side of grammars,

we have word(unr(T )) ∼P word(T ) ∼P Y⃗ . Now suppose that T a−→ U ; then unr(T )
a−→

U ; since word(unr(T )) ∼P Y⃗ , our previous case analysis yields Y⃗
a−→ Y⃗ ′ for some Y⃗ ′ s.t.

word(U) ∼P Y⃗ ′; concluding that (U, Y⃗ ′) ∈ R. Conversely, suppose that Y⃗ a−→P Y⃗ ′ for some

Y⃗ ′. Since word(unr(T )) ∼P Y⃗ , our previous case analysis yields unr(T ) a−→P U for some U s.t.

word(U) ∼P Y⃗ ′. We conclude that T a−→ U and therefore that (U, Y⃗ ′) ∈ R.

We are now able to prove Theorem 6.1.1
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Theorem 6.1.1 (Soundness for grammars). Let ⊢ T , ⊢ U , (X⃗,P ′) = grm(T, ∅) and (Y⃗ ,P) =

grm(U,P ′). If X⃗ ≲P Y⃗ , then T ≲ U .

Proof. Consider the following relation on pairs of types

R = {(V,W ) | X⃗V ≲P X⃗W },

where ⊢ V , ⊢ W , (X⃗V ,P ′) = grm(V, ∅) and (X⃗W ,P) = grm(W,P ′).

To prove the desired property, we show that R ⊆ ≲, in other words, that R is an XYZW-

simulation with X ,Y,Z,W defined as the sets generated, respectively, by the grammars for

aX , aY , aZ , aW in Definition 5.2.4. Take (V,W ) ∈ R with (X⃗V ,P ′) = grm(V, ∅) and (X⃗W ,P) =

grm(W,P ′).

First, let there be a ∈ X and V ′ s.t. V a−→ V ′. We want to show that there is a W ′ s.t. W a−→
W ′ and (V ′,W ′) ∈ R. By Lemma E.0.3, there exists Y⃗ such that X⃗V

a−→P Y⃗ and word(V ′) ∼P

Y⃗ . Since X⃗V ≲P X⃗W , we know there exists a matching word Z⃗ such that X⃗W
a−→P Z⃗ and that

Y⃗ ≲P Z⃗. Again by Lemma E.0.3, there exists W ′ such that W a−→ W ′ and Z⃗ ∼P word(W ′).

Let (X⃗V ′ ,P ′) = grm(V ′, ∅) and (X⃗W ′ ,P) = grm(W ′,P ′), and recall that X⃗V ′ = word(V ′) and

X⃗W ′ = word(W ′). Having X⃗V ′ ∼P Y⃗ and X⃗W ′ ∼P Z⃗, we know by Lemma E.0.1 that X⃗V ′ ≲P

Y⃗ and Z⃗ ≲P X⃗W ′ . Recalling that Y⃗ ≲P Z⃗, we establish by transitivity that X⃗V ′ ≲P X⃗W ′ and

therefore that (V ′,W ′) ∈ R.

Next, let there be a ∈ Y and W ′ s.t. W
a−→ W ′. We want to show that there is a V ′

s.t. V
a−→ V ′ and (V ′,W ′) ∈ R. Lemma E.0.3 gives us some Z⃗ with X⃗W

a−→P Z⃗ and

word(W ′) ∼P Z⃗. Since a ∈ Y , we know from X⃗V ≲P X⃗W that there is a matching word Y⃗ such

that X⃗V
a−→P Y⃗ and that Y⃗ ≲P Z⃗. Once again by Lemma E.0.3 we know there exists V ′ such

that V a−→ V ′ and Y⃗ ∼P word(V ′). Let (X⃗V ′ ,P ′) = grm(V ′, ∅) and (X⃗W ′ ,P) = grm(W ′,P ′).

Having Y⃗ ∼P X⃗V ′ and X⃗W ′ ∼P Z⃗, we know by Lemma E.0.1 that X⃗V ′ ≲P Y⃗ and Z⃗ ≲P X⃗W ′ .

Recalling that Y⃗ ≲P Z⃗, we can establish by transitivity that X⃗V ′ ≲P X⃗W ′ and therefore that

(V ′,W ′) ∈ R.

Now let there be a ∈ Z and V ′ s.t. V
a−→ V ′. We want to show that there is a W ′ s.t.

W
a−→ W ′ and (W ′, V ′) ∈ R. By Lemma E.0.3, there exists Y⃗ s.t. X⃗V

a−→ Y⃗ and word(V ′) ∼P

Y⃗ . Since X⃗V ≲P X⃗W , we know there exists a matching word Z⃗ s.t. X⃗W
a−→ Z⃗ and that

Z⃗ ≲P Y⃗ . Again by Lemma E.0.3, there exists W ′ s.t. W
a−→ W ′ and Z⃗ ∼P word(W ′). Let

(X⃗V ′ ,P ′) = grm(V ′, ∅) and (X⃗W ′ ,P) = grm(W ′,P ′), and recall that X⃗V ′ = word(V ′) and

X⃗W ′ = word(W ′). Having X⃗W ′ ∼P Z⃗ and X⃗V ′ ∼P Y⃗ , we know by Lemma E.0.1 that X⃗W ′ ≲P

Z⃗ and Y⃗ ≲P X⃗V ′ . Recalling that Z⃗ ≲P Y⃗ , we establish by transitivity that X⃗W ′ ≲P X⃗V ′ and

therefore that (W ′, V ′) ∈ R.

Finally, let there be a ∈ W and W ′ s.t. W
a−→ W ′. We want to show that there is a V ′

s.t. V
a−→ V ′ and (V ′,W ′) ∈ R. Lemma E.0.3 gives us some Z⃗ with X⃗W

a−→P Z⃗ and

word(W ′) ∼P Z⃗. Since a ∈ Y , we know from X⃗V ≲P X⃗W that there is a matching word Y⃗ such

that X⃗V
a−→P Y⃗ and that Z⃗ ≲P Y⃗ . Once again by Lemma E.0.3 we know there exists V ′ such

that V a−→ V ′ and Y⃗ ∼P word(V ′). Let (X⃗V ′ ,P ′) = grm(V ′, ∅) and (X⃗W ′ ,P) = grm(W ′,P ′).
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Having X⃗W ′ ∼P Z⃗ and Y⃗ ∼P X⃗V ′ , we know by Lemma E.0.1 that X⃗W ′ ≲P Z⃗ and Y⃗ ≲P X⃗V ′ .

Recalling that Z⃗ ≲P Y⃗ , we can establish by transitivity that X⃗V ′ ≲P X⃗W ′ and therefore that

(V ′,W ′) ∈ R.





Appendix F

Proof of Lemmas 6.2.1 and 6.3.1
and Theorem 6.3.1

To prove the soundness of our algorithm, we need to prove the soundness of its three phases:

translation from types to grammars, grammar pruning and exploration of an XYZW-expansion

tree. The soundness of the first phase is guaranteed by Theorem 6.1.1 (with its proof given in

Appendix E). It remains now to show that the remaining phases are also sound. We begin with the

second phase, grammar pruning.

Lemma 6.2.1 (Soundness and completeness for pruning). X⃗ ⪯XYZW
P Y⃗ iff X⃗ ⪯XYZW

prune(P) Y⃗

Proof. For the direct implication, the XYZW-simulation for X⃗ and Y⃗ over P is also an XYZW-

simulation for X⃗ and Y⃗ over prune(P). For the reverse implication, if R′ is an XYZW-simulation

for X⃗ and Y⃗ over prune(P), then relation

R = R′ ∪ {(Z⃗Y, Z⃗Y W⃗ ) | (X → Z⃗Y W⃗ ) ∈ P, Y unnormed}

is an XYZW-simulation for X⃗ and Y⃗ over P .

We now turn to the soundness of the last phase. The exploration of the XYZW-expansion tree

is carried out through expansion and simplification steps. Expansion steps attempt to build an

XYZW-simulation from an initial pair of grammar words (X⃗, Y⃗ ), while simplification steps

are used modify the construction of the tree, attempting to keep some branches of the tree finite

even when the corresponding XYZW-simulation is not. This procedure returns True whenever

an empty node is reached (meaning there is a successful branch), or False if all nodes fail to

expand (meaning there is no successful branch). Given these stopping conditions, the soundness

of the exploration procedure relies on the tree it yields having the following property: there is a

successful branch iff X⃗ ⪯XYZW
P Y⃗ . This is known as the safeness property.

The proof of this property is given in two parts: in the first we show the property holds for a

tree constructed through expansion steps only; in the second we show that the simplification rules

modify the tree safely, i.e., if their application results in a tree with a successful branch, then an

XYZW-simulation can actually be constructed.

115
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Lemma 6.3.1 (Safeness property for XYZW-simulation). Given a set of productions P , it holds

that X⃗ ⪯XYZW
P Y⃗ iff the expansion tree rooted at {(X⃗, Y⃗ )} has a successful branch.

Proof. In an expansion tree without simplification both directions follow directly from the defini-

tion of expansion. Recall that in an XYZW-expansion tree, each child is an XYZW-expansion

of its parent. Observe then that in an XYZW-expansion tree rooted at {(X⃗, Y⃗ )}, the union of all

nodes along a successful branch (i.e. infinite or containing an empty leaf) constitutes an XYZW-

simulation (over productions P) that includes (X⃗, Y⃗ ). Hence X⃗ ≲P Y .

In an expansion tree with simplifications, the union of all nodes along a successful branch need

not be an XYZW-simulation, only a (hopefully finite) representation of it, i.e., a set with which

we can reconstruct it by reversing the simplifications. It remains to show how this can be done for

each simplification rule:

• REFLEXIVITY: Let N be a node at depth n such that {(X⃗i, X⃗i)}i∈1..j ⊆ N for some j.

Applying REFLEXIVITY, its simplification is N ′ = N \ {(X⃗i, X⃗i)}i∈1..j . Observe that the

reflexive closure of the union of all nodes along the successful branch containing N ′ is an

XYZW-simulation containing N .

• PREORDER: Let ≤N be the least preorder containing the ancestors of a node N . Applying

PREORDER, its simplification is N ′ = N \ ≤N . Observe that the reflexive and transitive

closure of the union of all nodes along the successful branch containing N ′ is an XYZW-

simulation containing N .

• SPLIT: Let N be a node containing a pair of the form (X0X⃗, Y0Y⃗ ) with norm(X0) ≤
norm(Y0) (the case where norm(X0) > norm(Y0) is similar). Let sequence a⃗ = a1, . . . , ak

be a minimal path for X0, and Z⃗ be a word such that Y0
a⃗−→P Z⃗. Applying SPLIT to N

yields N itself and a sibling N ′ with pairs (X0Z⃗, Y0), (X⃗, Z⃗Y⃗ ) in place of (X0X⃗, Y0Y⃗ ).

We need to show that, assuming there is an XYZW-simulation over P containing N ′, it is

possible to obtain an XYZW-simulation over P containing N .

Let R′ be an XYZW-simulation over P containing N ′ and S1 be the smallest XYZW-

simulation over P that includes pair (X0Z⃗, Y0). Then, relation

R = R′ ∪ {(X0X⃗, Y0Y⃗ )} ∪ {(X⃗1X⃗, Y⃗1Y⃗ ) | (X⃗1Z⃗, Y⃗1) ∈ S1}

is an XYZW-simulation over P containing N .

Since N ′ includes all pairs of N except (X0X⃗, Y0Y⃗ ) and R′ is an XYZW-simulation over

P containing N ′, it follows from the union of R′ with {(X0X⃗, Y0Y⃗ )} that R contains N .

All that remains now is to show that R is an XYZW-simulation over P . Since R′ is

already such a relation, we need to show that it remains so after adding to it every pair in

{(X0X⃗, Y0Y⃗ )} ∪ {(X⃗1X⃗, Y⃗1Y⃗ ) | (X⃗1Z⃗, Y⃗1) ∈ S1}. For (X0X⃗, Y0Y⃗ ) this is easy: we

observe that the pairs containing the derivatives of all matching transitions of X0X⃗ and

Y0Y⃗ are elements of {(X⃗1X⃗, Y⃗1Y⃗ ) | (X⃗1Z⃗, Y⃗1) ∈ S1}. For the pairs in {(X⃗1X⃗, Y⃗1Y⃗ ) |
(X⃗1Z⃗, Y⃗1) ∈ S1} we need to distinguish two cases:

– (Case X⃗1 ̸= ε): We observe that, from the definition of S1, it follows that relation
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{(X⃗1X⃗, Y⃗1Y⃗ ) | (X⃗1Z⃗, Y⃗1) ∈ S1}, which is contained in R, contains the paired deriva-

tives of all matching transitions of X1X⃗ and Y1Y⃗ .

– (Case X⃗1 = ε): We observe that, since R contains R′ (an XYZW-simulation con-

taining N ′), it must include the paired derivatives of all matching transitions of X⃗ and

Y1Y⃗ .

With the safeness property established, we can finally put together a soundness proof encom-

passing all of the three phases of the algorithm.

Lemma F.0.1. If subG(X⃗T , X⃗U , prune(P)) returns True, then X⃗T ≲prune(P) X⃗U .

Proof. Function subG returns True whenever it finds a finite successful branch (i.e., a branch ter-

minating in an empty node) in the expansion tree rooted at {(X⃗, Y⃗ )}. Conclude with the safeness

property, Lemma 6.3.1.

Theorem 6.3.1 (Soundness). If subT(T,U) returns True, then T ≲ U .

Proof. From Theorem 6.1.1, Lemma 6.2.1 and Lemma F.0.1.
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