
FreeST and Polymorphic Higher-
order Session Types

University of Nagoya, 30 November 2023

Bernardo Almeida, Diana Costa, Andreia Mordido,
Diogo Poças, Vasco T. Vasconcelos

University of Lisbon

FreeST is …

A programming language

• Functional

• Concurrent

• Call-by-value

• Message-passing on bidirectional, heterogeneous channels

• Buffered channels (asynchronous message passing)

• Linear and shared (unrestricted) channels

• Channel behaviour (protocol) described by types

• Types: Polymorphic (unpredicative), recursive, higher-order context-free session types

FreeST in numbers

• First git commit: 20/11/2017

• 12 git contributors

• 3416 commits into the dev branch alone

• 4392 LOC (Haskell, Happy, Alex, FreeST)

• 977 manual tests (9749 FreeST LOC)

• 150135 quick check tests (type equivalence)

• Support for Visual Studio Code, Atom, Emacs

• Runs on Linux, MacOS, Windows

• 1 PhD thesis (ongoing)

• 4 + 4 MSc thesis (completed + ongoing)

https://freest-lang.github.io/

FreeST in Action
(Demo time)

チャレンジ

The main challenge is type equivalence in
the presence of semicolon

Type equivalence

• Determined by a bisimulation game between two types, T and U

• T must simulate U

• U must simulate T

• Or else by a deductive coinductive system of rules (not shown)

Some laws for sequential composition

(T ; U) ; V = T ; (U; V) Associativity

T ; Skip = Skip ; T = T Skip is neutral element

Close ; T = Close Close is left absorbing (same for Wait)

+{a: T, b: U} ; V = +{a: T ; V, b: U ; V} Right distributivity

(rec x. T ; x) ; U = rec x. T ; x Unnormed types are left absorbing

Running a bisimulation on two types

!Int ; Skip !Int

Skip ; Skip Skip

!Int !Int

Simplified for first order sessions

Another example of bisimulation

+{a:!Int, B:?Bool} ; !Char +{a:!Int ; !Char, B:?Bool ; !Char}

?Bool ; !Char

+a

!Int ; !Char

+b +a +b

?Bool ; !Char

!Int ; !Char

Why not a standard fixed point construction?

T Uunfolds to !Int; T unfolds to !Int; U ; U
!Int!Int

U ; U

Let T = rec x. !Int ; x Let U = rec y. !Int ; y ; y

!Int

U ; U ; UT and U are equivalent
The bisimulation is

{(T, Un) | n ≥ 1}

How do we decide type equivalence?

• Transform types into simple grammars

• Productions of the form X → a Y1…Yn, n ≥ 0

• No ε transitions

• No two productions X → a Y1…Yn and X → a Z1…Zm (deterministic)

• We have developed an algorithm to decide the bisimilarity of two words in
a grammar

• It is incorporated in the Freest compiler

The grammar associated to a type

• Type: +{a: !Int, b:?Bool} ; !Char

• Start word: X1

• Productions:

• X1 → +a X2X4 X1 → +b X3X4

• X2 → !Int

• X3 → ?Bool

• X4 → !Char
A word in bold represents one terminal symbol

Which types can be translated to simple grammars?

• Predicative polymorphic + first-order session types (ICFP 2016)

• Impredicative polymorphic (System Fμ), still first order sessions (I&C 2022)

• System Fμ + higher-order session types (PLACES 2022, TCS soon)

• This is Freest V3.0

• Type operators (System Fμω) with ∗-kinded recursion only, i.e., no
recursion over type operators (ESOP 2023)

• (Are we reaching the limit?) First-order: channels carry base types only
Higher order: channels may carry channelsAll systems include recursive types

Where are the limits?

As in TAPL

Regular ST

Context-free ST

System Fμω with Context-
free Session Types

Higher-order polymorphism in FreeST

• First-order

• Higher-order

• Is IntStream equivalent to Stream Int?

• We need beta-reduction at the type level

With type operators duality can be internalised

• We have seen the unmarshall function with the dualof macro

• We can now marshall and unmarshall trees of arbitrary types

• And we can have Dual as a type operator

• The Dual operator is of kind S → S (from session types to session types)

System Fωμ with Context-free Session Types

Only 4 types

The labelled-transition system for type equivalence

• Some rules

• How do we check this goal

if α and β, both bound variables, appear in the LTS as different labels?

• Remember that labels in the LST are terminal symbols in grammars

Solution: Minimal renaming

• We take the set of type variables as ordered and

• Perform minimal renaming on all bound variables

• Example where v1 is the first non free variable in each subterm

• We thus obtain types with variable names in canonical form and λ is not a
binder anymore

Example

λv1.v1 λv1.v1

v1 v1

λv1

λa.a λb.b

Skip Skip

λv1

v1 v1

rename rename

Back to FreeST

The current FreeST compiler

• The AST contains types in AST form

• Whenever we need to check type equivalence we

• First check whether the two types are alpha-equivalent (linear)

• If not:

• Convert both types to a grammar

• Run bisimulation on the the grammar

• Discard the grammar (what a waste)

The next FreeST compiler

• At the elaboration stage (between parsing and type checking) we
translate all types to (words of) non-terminal symbols in a single grammar

• Rather than the types themselves, the AST keeps words of non-terminal
symbols representing types

• No need for to-grammar translation at type equivalence checking points

• Furthermore, extracting the main type operator in a type becomes a lot
simpler. Here’s an algorithmic typing rule in the current compiler

Conclusion

• We had a lot of fun until now

• We plan to continue having fun for some time

• A lot remains to be done:

• Implement higher-order polymorphism

• Kind inference for type abstractions and recursive types (coming soon)

• Local type inference for type applications

• Devise a faster algorithm for type equivalence (coming soon)

https://freest-lang.github.io/

