FreeST and Polymorphic Higher-
order Session Types

Bernardo Almeida, Diana Costa, Andreia Mordido,
Diogo Pocas, Vasco T. Vasconcelos
University of Lisbon

University of Nagoya, 30 November 2023

FreeST is...

A programming language

Functional

Concurrent

Call-by-value

Message-passing on bidirectional, heterogeneous channels
Buffered channels (asynchronous message passing)

Linear and shared (unrestricted) channels

Channel behaviour (protocol) described by types

Types: Polymorphic (unpredicative), recursive, higher-order context-free session types

FreeST in numbers

First git commit: 20/11/2017

12 git contributors

3416 commits into the dev branch alone
4392 LOC (Haskell, Happy, Alex, FreeST)

977 manual tests (9749 FreeST LOC)

150135 quick check tests (type equivalence)
Support for Visual Studio Code, Atom, Emacs
Runs on Linux, MacOS, Windows

1 PhD thesis (ongoing)

4 + 4 MSc thesis (completed + ongoing)

https://freest-lang.github.io/

I L Desktop [T) 08 - o «x
- B = foo.fst X
- = foo.fst
1 main : ()
main = 5

®1A0 Ln2, Col 9 Spaces:4 UTF-8 CRLF freest %@ Spell &' [

L Desktop

—

[! = foo.fst X

= foo.fst
] main : ()

2 main = |()

Ln 2, Col 10 Spaces:4 UTF-8 CRLF freest €& Spell & L[

®oAO0

FreeST |n Action

eeeeeeee

The main challenge is type equivalence in
the presence of semicolon

Type equivalence

» Determined by a bisimulation game between two types, T and U
« T must simulate U
« U mustsimulate T

« Or else by a deductive coinductive system of rules (not shown)

Some laws for sequential composition

(T;U);V=T;(;V) Associativity
T;Skip=Skip; T=T Skip is neutral element
Close ; T = Close Close is left absorbing (same for Wait)

+a: T, b: U};V=+a:T;V b:U;V} Rightdistributivity

(recx. T;x);U=recx.T;x Unnormed types are left absorbing

Running a bisimulation on two types

lInt ; Skip Nt

Nt

{ {

Simplified for first order sessions

Another example of bisimulation

+{a:lInt, B:?Bool} ; IChar +{a:lInt ; IChar, B:?Bool ; |Char}

5 ?Bool : IChar 5 ?Bool : IChar

Why not a standard fixed point construction?

Let T =rec x. !lInt; X LetU=recy.!int;y;y
T unfoldsto!lint; T U unfoldstolint; U; U
Q”nt l!lnt
U: U
Nt
T and U are equivalent U:U:U

The bisimulation is
{(T, Un) | n 21}

How do we decide type equivalence?

» Transform types into simple grammars
» Productions of the form X = a Y1..Yn, n 20
« NoO € transitions
» No two productions X = a Yi..Ynand X = a Z1...Zm (deterministic)

- We have developed an algorithm to decide the bisimilarity of two words in
a grammar

 [tisincorporated in the Freest compiler

The grammar associated to a type

« Type: +{a: !lInt, b:?Bool} ; IChar
» Start word: X;
» Productions:
e X1 +a XoXs4 X1 — +b X3X4
« X2 — lint
« X3 — ?Bool

e X4 = IChar
A word in bold represents one terminal symbol

Which types can be translated to simple grammars?

» Predicative polymorphic + first-order session types (ICFP 2016)

» [mpredicative polymorphic (System F"), still first order sessions (I&C 2022)
« System F" + higher-order session types (PLACES 2022, TCS soon)

» This is Freest V3.0

- Type operators (System FHy,) with «-kinded recursion only, i.e., no
recursion over type operators (ESOP 2023)

. i imit? .
(Are we reaching the limit?) First-order: channels carry base types only
All systems include recursive types| |Higher order: channels may carry channels

Where are the limits?

F# —— Fhb~ rh As in TAPL

finite-state i ; F(ff* Foff

automata
. l l Context-free ST
simple | | ——
grammars P — Fﬁ i F(ff » > deterministic

pushdown automata

System FV, with Context-
free Session Types

Higher-order polymorphism in FreeST

e First-order

IntStream = p a: s. &{Done: End, More: ?Int; o}

» Higher-order
Stream = Aa:: T.(u B: s. &{Done: End, More: ?a; 5)}

. |s IntStream equivalent to Stream Int?

- We need beta-reduction at the type level

(Aa: k. T)U —g T|aw— U]

With type operators duality can be internalised

« We have seen the unmarshall function with the dualof macro

unmarshall : dualof TreeC ; a —> (Tree, a)

- We can now marshall and unmarshall trees of arbitrary types

unmarshall : dualof (TreeC b) ; a —> (Tree b, a)

- And we can have Dual as a type operator

unmarshall : Dual (TreeC b) ; a —> (Tree b, a)

« The Dual operator is of kind S = S (from session types to session types)

X = Base kind
S Session
T Functional
K = Kind
% kind of types
kK= K kind of type constructors
T = Type or type constructor
L type constant
« type variable

Aa: kT type-level abstraction
TT type-level application

Only 4 types

Fig. 3: The syntax of types

L i—

Skip
End

Dual

System F " with Context-free Session Types

Type constant

skip

end

input and output
sequential composition

external and internal choice

arrow
universal type
unit

record and variant

recursive type

dual type constructor

Fig. 4: Type constants and their

kinds

The labelled-transition system for type equivalence

e Some rules 'T,U !I)T 'T,U !2>U
Aa: 5. T 2T
1 >5U U a)V

T =YV
- How do we check this goal

Ao k.o equivalent to A\G: k.00

if a and 3, both bound variables, appear in the LTS as different labels?

- Remember that labels in the LST are terminal symbols in grammars

Solution: Minimal renaming

We take the set of type variables as ordered and
Perform minimal renaming on all bound variables

Example where v; is the first non free variable in each subterm
rename(Aa: T.AB: S.3) = Avi: T.A\vp: S.uq

We thus obtain types with variable names in canonical form and A is not a
binder anymore

Back to FreeST

The current FreeST compiler

« The AST contains types in AST form
- Whenever we need to check type equivalence we
 First check whether the two types are alpha-equivalent (linear)
. If not:
» Convert both types to a grammar
» Run bisimulation on the the grammar

» Discard the grammar (what a waste)

The next FreeST compiler

At the elaboration stage (between parsing and type checking) we
translate all types to (words of) non-terminal symbols in a single grammar

Rather than the types themselves, the AST keeps words of non-terminal
symbols representing types

No need for to-grammar translation at type equivalence checking points

Furthermore, extracting the main type operator in a type becomes a lot

simpler. Here’s an algorithmic typing rule in the current compiler

TA-ApPp
A|F1|—61:>llT—)mU‘F2 A‘F2F622T2>F3

A|F1|_6162=>U‘F3

Conclusion

- We had a lot of fun until now
» We plan to continue having fun for some time
A lot remains to be done:
» Implement higher-order polymorphism
- Kind inference for type abstractions and recursive types (coming soon)

Va:1lS . Tree —> TreeC ; a —> a

- Local type inference for type applications

forkWith @(dualof TreeC ; Wait) @() (marshallTree aTree)
» Devise a faster algorithm for type equivalence (coming soon)

https://freest-lang.github.io/

D=0
. 9 E_
E - O

