
FreeST and the Higher-order 
Polymorphic Lambda Calculus

University of Porto, 6 October 2022

Bernardo Almeida, Diana Costa, Andreia Mordido, 
Diogo Poças, Vasco T. Vasconcelos 



FreeST is …

A programming language 

• Functional 

• Concurrent 

• Call-by-value 

• Message-passing on bidirectional, heterogeneous channels 

• Linear and shared (unrestricted) channels 

• Channel behaviour (protocol) described by types 

• Types: Polymorphic (System F), recursive, context-free session types 



FreeST in numbers

• First git commit: 20/11/2017 

• 8 git contributors 

• 3270 commits into the dev branch alone 

• 4392 LOC (Haskell, Happy, Alex, FreeST) 

• 817 manual tests (6549 FreeST LOC) 

• 150135 quick check tests (type equivalence) 

• Support for Visual Studio Code, Atom, Emacs 

• Runs on Linux, MacOS, Windows 

• 1 PhD thesis (ongoing) 

• 4 + 2 MSc thesis (completed + ongoing)



FreeST in Action



Lists

• Lists are the bread and butter of functional programming 

• Yet FreeST features no primitive support for lists 

• One may write 

• But not



What’s so difficult about polymorphic lists, anyway?

• List is not a type as we know them, but a type operator 

• When applied to Int, as in List Int, it becomes a proper type 

• In any case, the theory of Higher-order Polymorphism, Fω, is well 
established 

• Why are we taking so long?



The answer is “the semicolon is holding us”



Type equivalence is a bisimulation

• But first let us understand how we decide type equivalence 

• <Whiteboard here>



Deciding type equivalence

• Rather than looking for fixed-point as just shown, we 

• Translate types into simple grammars: 

• Productions of the form X —> a X1…Xn (n >= 0) 

• No epsilon transitions 

• Productions are deterministic: no 

• X —> a Y1…Yn and 

• X —> a Z1…Zm 

• Bisimulation for simple grammars is decidable; there is a practical algorithm



Higher-order Polymorphism in FreeST

• First-order 

• Higher-order 

• Is IntStream equivalent to Stream Int? 

• We need beta-reduction at the type level 

• But simple grammars don’t know how to beta-reduce :(



The type-level Dual operator can be internalised

• We have seen the dualof macro 

• We can now write 

• where Dual is an operator of kind S —> S (from session types to session 
types)



The expressive power of extensions to System F

F _ Polymorphic lambda-calculus 

Fμ _ F with (equi) recursive types 

Fμ∗ _ F w/ monomorphic recursion 

F· _ F with tail-recursive ST 

F; _ F with context-free ST 

Fω _ Higher-order polymorphism 

Expressive power 
(arrows denote strict inclusions)



System Fωμ with Context-free Session Types



The labelled-transition system

• Some rules 

• How do we check this goal 
 
 
if α and β, both bound variables, appear in the LTS as labels?



Minimal Renaming

• We take the set of type variables as ordered and 

• Perform minimal renaming on all bound variables 

• Example where v1 is the first free variable in each subterm 

• And we also do this in beta-reduction because renaming is not preserved 
by reduction



Deciding type equivalence

• Take the polymorphic tree receive type 

• which can be written as 

• Translate to a simple grammar 

• Do this to both types; run the bisim algorithm on the grammar



The current FreeST compiler

• The AST contains types in AST form 

• Whenever we need to check type equivalence we 

• Convert both types to a grammar 

• Run bisimulation on the the grammar 

• Discard the grammar



The next FreeST compiler

• At the elaboration stage (between parsing and type checking) we 
translate all types to (words of) non-terminal symbols in a single grammar 

• Rather than types in AST format we keep types as words of non-terminal 
symbols 

• No need for to-grammar translation at type equivalence checking points 

• Furthermore, extracting the main type operator in a type becomes a lot 
simpler. Here’a an algorithmic typing rule in the current compiler



Conclusion

• We had a lot of fun until now 

• We plan to continue having fun for some time 

• A lot remains to be done 

• Implement higher-order polymorphism 

• Local kind inference for type abstractions and recursive types 

• Local type inference for type applications


