
FreeST and the Higher-order 
Polymorphic Lambda Calculus

University of Porto, 6 October 2022

Bernardo Almeida, Diana Costa, Andreia Mordido,

Diogo Poças, Vasco T. Vasconcelos




FreeST is …

A programming language


• Functional


• Concurrent


• Call-by-value


• Message-passing on bidirectional, heterogeneous channels


• Linear and shared (unrestricted) channels


• Channel behaviour (protocol) described by types


• Types: Polymorphic (System F), recursive, context-free session types




FreeST in numbers

• First git commit: 20/11/2017


• 8 git contributors


• 3270 commits into the dev branch alone


• 4392 LOC (Haskell, Happy, Alex, FreeST)


• 817 manual tests (6549 FreeST LOC)


• 150135 quick check tests (type equivalence)


• Support for Visual Studio Code, Atom, Emacs


• Runs on Linux, MacOS, Windows


• 1 PhD thesis (ongoing)


• 4 + 2 MSc thesis (completed + ongoing)



FreeST in Action



Lists

• Lists are the bread and butter of functional programming


• Yet FreeST features no primitive support for lists


• One may write


• But not



What’s so difficult about polymorphic lists, anyway?

• List is not a type as we know them, but a type operator


• When applied to Int, as in List Int, it becomes a proper type


• In any case, the theory of Higher-order Polymorphism, Fω, is well 
established


• Why are we taking so long?



The answer is “the semicolon is holding us”



Type equivalence is a bisimulation

• But first let us understand how we decide type equivalence


• <Whiteboard here>



Deciding type equivalence

• Rather than looking for fixed-point as just shown, we


• Translate types into simple grammars:


• Productions of the form X —> a X1…Xn (n >= 0)


• No epsilon transitions


• Productions are deterministic: no


• X —> a Y1…Yn and


• X —> a Z1…Zm


• Bisimulation for simple grammars is decidable; there is a practical algorithm



Higher-order Polymorphism in FreeST

• First-order


• Higher-order


• Is IntStream equivalent to Stream Int?


• We need beta-reduction at the type level


• But simple grammars don’t know how to beta-reduce :(



The type-level Dual operator can be internalised

• We have seen the dualof macro


• We can now write


• where Dual is an operator of kind S —> S (from session types to session 
types)



The expressive power of extensions to System F

F _ Polymorphic lambda-calculus


Fμ _ F with (equi) recursive types


Fμ∗ _ F w/ monomorphic recursion


F· _ F with tail-recursive ST


F; _ F with context-free ST


Fω _ Higher-order polymorphism


Expressive power

(arrows denote strict inclusions)



System Fωμ with Context-free Session Types



The labelled-transition system

• Some rules


• How do we check this goal 
 
 
if α and β, both bound variables, appear in the LTS as labels?



Minimal Renaming

• We take the set of type variables as ordered and


• Perform minimal renaming on all bound variables


• Example where v1 is the first free variable in each subterm


• And we also do this in beta-reduction because renaming is not preserved 
by reduction



Deciding type equivalence

• Take the polymorphic tree receive type


• which can be written as


• Translate to a simple grammar


• Do this to both types; run the bisim algorithm on the grammar



The current FreeST compiler

• The AST contains types in AST form


• Whenever we need to check type equivalence we


• Convert both types to a grammar


• Run bisimulation on the the grammar


• Discard the grammar



The next FreeST compiler

• At the elaboration stage (between parsing and type checking) we 
translate all types to (words of) non-terminal symbols in a single grammar


• Rather than types in AST format we keep types as words of non-terminal 
symbols


• No need for to-grammar translation at type equivalence checking points


• Furthermore, extracting the main type operator in a type becomes a lot 
simpler. Here’a an algorithmic typing rule in the current compiler



Conclusion

• We had a lot of fun until now


• We plan to continue having fun for some time


• A lot remains to be done


• Implement higher-order polymorphism


• Local kind inference for type abstractions and recursive types


• Local type inference for type applications


