FreeST and the Higher-order
Polymorphic Lambda Calculus

Bernardo Almeida, Diana Costa, Andreia Mordido,
Diogo Pocas, Vasco T. Vasconcelos

University of Porto, 6 October 2022

FreeSTis...

A programming language

Functional

Concurrent

Call-by-value

Message-passing on bidirectional, heterogeneous channels
Linear and shared (unrestricted) channels

Channel behaviour (protocol) described by types

Types: Polymorphic (System F), recursive, context-free session types

FreeST in numbers

First git commit: 20/11/2017

8 git contributors

3270 commits into the dev branch alone
4392 LOC (Haskell, Happy, Alex, FreeST)

817 manual tests (6549 FreeST LOC)

150135 quick check tests (type equivalence)
Support for Visual Studio Code, Atom, Emacs
Runs on Linux, MacOS, Windows

1 PhD thesis (ongoing)

4 + 2 MSc thesis (completed + ongoing)

FreeST in Action

Lists

- Lists are the bread and butter of functional programming

« Yet FreeST features no primitive support for lists

« One may write

data IntList = ICons Int IntList | INil

data BoolList = BCons Bool BoolList | BNil

« But not

data List a = Cons a (List a) | Nil

What's so difficult about polymorphic lists, anyway?

data List a = Cons a (List a) | Nil

List is not a type as we know them, but a type operator

When applied to Int, as in List Int, it becomes a proper type

In any case, the theory of Higher-order Polymorphism, Fy, is well
established

Why are we taking so long?

The answer is “the semicolon is holding us”

Type equivalence is a bisimulation

- But first let us understand how we decide type equivalence

« <Whiteboard here>

Deciding type equivalence

« Rather than looking for fixed-point as just shown, we
 Translate types into simple grammars:
« Productions of the form X —> a X1...Xn (n >=0)
- No epsilon transitions
 Productions are deterministic: no
« X—>aYi.Ynand
« X—>aZy..Im

 Bisimulation for simple grammars is decidable; there is a practical algorithm

Higher-order Polymorphism in FreeST

« First-order

IntStream = p a: S. &{Done: End, More: ?Int; o}

- Higher-order
Stream = Aa: T.(u B: S.&{Done: End, More: ?a; 5)}

. |s IntStream equivalent to Stream Int?

- We need beta-reduction at the type level
(Aa: & T) U — T — U]
- But simple grammars don’t know how to beta-reduce :(

The type-level Dual operator can be internalised

« We have seen the dualof macro

« We can now write

streamify : Va.Vc.Vd.TreeC a; ¢ — Dual (Stream a) ; d
— (c, Dual (Stream a); d)

- where Dual is an operator of kind S —> S (from session types to session
types)

The expressive power of extensions to System F

> deterministic
pushdown automata

i

l

F _Polymorphic lambda-calculus

Fr _ F with (equi) recursive types e > b

Fe- _F w/ monomorphic recursion l l
finite-state v — FJ}L*
F- _ F with tail-recursive ST automata

F: _F with context-free ST simple)
grammars JfH —— Fcfj ;

Fo _Higher-order polymorphism

Expressive power
(arrows denote strict inclusions)

System F,* with Context-free Session Types

a: kT
TT

Base kind

Session

Functional

Kind

kind of types

kind of type constructors
Type or type constructor
type constant

type variable

type-level abstraction

type-level application

Fig. 3: The syntax of types

L o=
Skip
End

e
Dual

Type constant

skip

end

input and output
sequential composition

external and internal choice

arrow

universal type
unit

record and variant
recursive type

dual type constructor

Fig. 4: Type constants and their

kinds

The labelled-transition system

. Some rules !T;U!—1>T !T;U!—2>U
ha: 5T 20T
T —sU U=V
T —YV

- How do we check this goal

Ao: k.o equivalent to A\S: k.3

if a and B, both bound variables, appear in the LTS as labels?

Minimal Renaming

We take the set of type variables as ordered and

Perform minimal renaming on all bound variables

Example where vi is the first free variable in each subterm
rename(Aa: T.AB: S.0) = Avg: T.Avg: S.uq

And we also do this in beta-reduction because renaming is not preserved

by reduction

()\d: k.1) U — 3 renamey (T [a—U])

Deciding type equivalence

Take the polymorphic tree receive type

type TreeC a = &{LeafC: Skip, NodeC: TreeC a; 7a ;

which can be written as

To = Aa: T.u B: s. &{Leaf: Skip, Node: 8;7a; 5}

Translate to a simple grammar

TreeC a}

XQ)\%TXl Xl—)éf X1 —)X3 Xgﬁ)g X2 ﬁ)Xg

Xa 2% X, X1 X <3 XaXuX:, X4 -5 Xl Xi-23He¢

Do this to both types; run the bisim algorithm on the grammar

X5£)8

The current FreeST compiler

« The AST contains types in AST form

-« Whenever we need to check type equivalence we
- Convert both types to a grammar
« Run bisimulation on the the grammar

- Discard the grammar

The next FreeST compiler

At the elaboration stage (between parsing and type checking) we
translate all types to (words of) non-terminal symbols in a single grammar

Rather than types in AST format we keep types as words of non-terminal
symbols

No need for to-grammar translation at type equivalence checking points

Furthermore, extracting the main type operator in a type becomes a lot

simpler. Here’a an algorithmic typing rule in the current compiler

TA-AppP
A|F1|—€1=>U«T—)mU|F2 A|F2|—62:T=>F3

A|F1|—6162=>U|F3

Conclusion

- We had a lot of fun until now
« We plan to continue having fun for some time
- A lot remains to be done
- Implement higher-order polymorphism
 Local kind inference for type abstractions and recursive types

forall a:1S . TreeC ; a —> (Tree, a)

- Local type inference for type applications

forkWith @TreeChannel @() (writeTree aTree)

