FreeST and the Higher-order Polymorphic Lambda Calculus

Bernardo Almeida, Diana Costa, Andreia Mordido,

Diogo Poças, Vasco T. Vasconcelos

University of Porto, 6 October 2022

FreeST is

A programming language

- Functional
- Concurrent
- Call-by-value
- Message-passing on bidirectional, heterogeneous channels
- Linear and shared (unrestricted) channels
- Channel behaviour (protocol) described by types
- Types: Polymorphic (System F), recursive, context-free session types

FreeST in numbers

- First git commit: 20/11/2017
- 8 git contributors
- 3270 commits into the dev branch alone
- 4392 LOC (Haskell, Happy, Alex, FreeST)
- 817 manual tests (6549 FreeST LOC)
- 150135 quick check tests (type equivalence)
- Support for Visual Studio Code, Atom, Emacs
- Runs on Linux, MacOS, Windows
- 1 PhD thesis (ongoing)
- 4 + 2 MSc thesis (completed + ongoing)

FreeST in Action

Lists

- Lists are the bread and butter of functional programming
- Yet FreeST features no primitive support for lists
- One may write

data IntList = ICons Int IntList | INil data BoolList = BCons Bool BoolList | BNil

• But not

data List a = Cons a (List a) | Nil

What's so difficult about polymorphic lists, anyway?

data List a = Cons a (List a) | Nil

- List is not a type as we know them, but a type operator
- When applied to Int, as in List Int, it becomes a proper type
- In any case, the theory of Higher-order Polymorphism, $F_{\boldsymbol{\omega}}$, is well established
- Why are we taking so long?

The answer is "the semicolon is holding us"

Type equivalence is a bisimulation

- But first let us understand how we decide type equivalence
- <Whiteboard here>

Deciding type equivalence

- Rather than looking for fixed-point as just shown, we
- Translate types into simple grammars:
 - Productions of the form $X \rightarrow a X_1...X_n (n \ge 0)$
 - No epsilon transitions
 - Productions are deterministic: no
 - X —> a Y₁...Y_n and
 - X —> a Z₁...Z_m
- Bisimulation for simple grammars is decidable; there is a practical algorithm

Higher-order Polymorphism in FreeST

• First-order

 $\mathsf{IntStream} = \mu \, \alpha \colon \mathbf{S}. \, \& \{\mathsf{Done} \colon \mathsf{End}, \mathsf{More} \colon ?\mathsf{Int}; \alpha \}$

• Higher-order

Stream = $\lambda \alpha$: T.($\mu \beta$: S. &{Done: End, More: $?\alpha; \beta$)}

- Is IntStream equivalent to Stream Int?
- We need beta-reduction at the type level

$$(\lambda \alpha \colon \kappa . T) \ U \longrightarrow_{\beta} T[\alpha \mapsto U]$$

• But simple grammars don't know how to beta-reduce :(

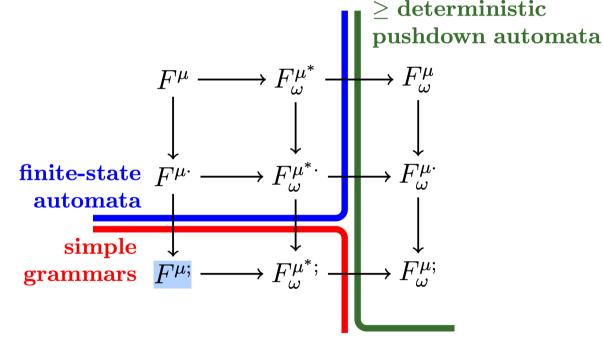
The type-level Dual operator can be internalised

- We have seen the dualof macro
- We can now write

 where Dual is an operator of kind S —> S (from session types to session types)

The expressive power of extensions to System F

- F _ Polymorphic lambda-calculus
- F^µ _ F with (equi) recursive types
- F^µ* _ F w/ monomorphic recursion
- F[•] F with tail-recursive ST
- F[;] _ F with context-free ST
- F_{ω} _ Higher-order polymorphism



Expressive power (arrows denote strict inclusions)

System F_{ω}^{μ} with Context-free Session Types

	D	<i>ι</i> ::=	:		Type constant
* ::=	Base kind		Skip	S	skip
S	Session				-
Т	Functional		End	S	end
1			#	$* \Rightarrow s$	input and output
κ ::=	Kind				accuration accuration
*	kind of types		2	$S \Rightarrow S \Rightarrow S$	sequential composition
			$\odot_{\{\overline{l_i}\}}$	$\overline{\mathrm{S} \Rightarrow} \mathrm{S}$	external and internal choice
$\kappa \Rightarrow \kappa$	kind of type constructors				0.000 CT
T ::=	Type or type constructor		\rightarrow	$* \Rightarrow * \Rightarrow T$	arrow
			\forall_{κ}	$(\kappa \Rightarrow *) \Rightarrow T$	universal type
l	type constant		Unit	Т	unit
lpha	type variable			1	
$\lambda \alpha \colon \kappa$	T type-level abstraction		(l_i)	$\overline{\ast \Rightarrow}$ T	record and variant
			μ_{κ}	$(\kappa \Rightarrow \kappa) \Rightarrow \kappa$	recursive type
TT	type-level application				
			Dual	$S \Rightarrow S$	dual type constructor

Fig. 3: The syntax of types

Fig. 4: Type constants and their kinds

The labelled-transition system

• Some rules
$$!T; U \xrightarrow{!_1} T \quad !T; U \xrightarrow{!_2} U$$

 $\lambda \alpha \colon \kappa . T \xrightarrow{\lambda \alpha \colon \kappa} T$
 $\frac{T \longrightarrow_{\beta} U \quad U \xrightarrow{a} V}{T \xrightarrow{a} V}$

How do we check this goal

 $\lambda \alpha : \kappa . \alpha$ equivalent to $\lambda \beta : \kappa . \beta$

if α and β , both bound variables, appear in the LTS as labels?

Minimal Renaming

- We take the set of type variables as ordered and
- Perform **minimal renaming** on all bound variables
- Example where v_1 is the first free variable in each subterm rename $(\lambda \alpha : \mathbf{T}.\lambda \beta : \mathbf{S}.\beta) = \lambda v_1 : \mathbf{T}.\lambda v_1 : \mathbf{S}.v_1$
- And we also do this in beta-reduction because renaming is not preserved by reduction

$$(\lambda \alpha \colon \kappa . T) U \longrightarrow_{\beta} \operatorname{rename}_{\emptyset}(T[\alpha \mapsto U])$$

Deciding type equivalence

Take the polymorphic tree receive type

type TreeC a = &{LeafC: Skip, NodeC: TreeC a; ?a ; TreeC a}

which can be written as

 $T_0 = \lambda \alpha : \mathbf{T} . \mu \beta : \mathbf{S} . \& \{ \text{Leaf} : \text{Skip}, \text{Node} : \beta; ?\alpha; \beta \}.$

Translate to a simple grammar

• Do this to both types; run the bisim algorithm on the grammar

The current FreeST compiler

- The AST contains types in AST form
- Whenever we need to check type equivalence we
 - Convert both types to a grammar
 - Run bisimulation on the the grammar
 - Discard the grammar

The next FreeST compiler

- At the elaboration stage (between parsing and type checking) we translate all types to (words of) non-terminal symbols in a single grammar
- Rather than types in AST format we keep types as words of non-terminal symbols
- No need for to-grammar translation at type equivalence checking points
- Furthermore, extracting the main type operator in a type becomes a lot simpler. Here'a an algorithmic typing rule in the current compiler

$$\frac{\Delta \mid \Gamma_1 \vdash e_1 \Rightarrow \Downarrow T \rightarrow_m U \mid \Gamma_2 \qquad \Delta \mid \Gamma_2 \vdash e_2 : T \Rightarrow \Gamma_3}{\Delta \mid \Gamma_1 \vdash e_1 e_2 \Rightarrow U \mid \Gamma_3}$$

Conclusion

- We had a lot of fun until now
- We plan to continue having fun for some time
- A lot remains to be done
 - Implement higher-order polymorphism
 - Local kind inference for type abstractions and recursive types

• Local type inference for type applications

forkWith @TreeChannel @() (writeTree aTree)